Answer:
180 Newton(N)
Explanation:
force =mass *acceleration
=60 * 3
=180 kgm/s^2
=180 N
Answer:
Option (b) is correct.
Explanation:
Elastic collision is defined as a collision where the kinetic energy of the system remains same. Both linear momentum and kinetic energy are conserved in case of an elastic collision.
Inelastic collision is defined as a collision where kinetic energy of the system is not conserved whereas the linear momentum is conserved. This loss of kinetic energy may due to the conversion to thermal energy or sound energy or may be due to the deformation of the materials colliding with each other.
As given in the problem, before the collision, total momentum of the system is
and the kinetic energy is
. After the collision, the total momentum of the system is
, but the kinetic energy is reduced to
. So some amount of kinetic energy is lost during the collision.
Therefor the situation describes an inelastic collision (and it could NOT be elastic).
Iron...................... hope this helpes
Answer:
E
Explanation:
Using Coulomb's law equation
Force of the charge = k qQ /d²
and E = F/ q
substitute for F
E = ( K Qq/ d² ) / q
q cancel q
E = KQ / d²
so twice the distance of the from the point charge will lead to the E ( electric field ) decrease by a 4 = E/4. E is inversely proportional to d²
M = mass of the first sphere = 10 kg
m = mass of the second sphere = 8 kg
V = initial velocity of the first sphere before collision = 10 m/s
v = initial velocity of the second sphere before collision = 0 m/s
V' = final velocity of the first sphere after collision = ?
v' = final velocity of the second sphere after collision = 4 m/s
using conservation of momentum
M V + m v = M V' + m v'
(10) (10) + (8) (0) = (10) V' + (8) (4)
100 = (10) V' + 32
(10) V' = 68
V' = 6.8 m/s