<span> They are called an oceanographer</span>
mRNA or Messenger RNA
mRNA transcribes the genetic code from DNA into a form that can be read and used to make proteins. mRNA carries genetic information from the nucleus to the cytoplasm of a cell.<span>rRNA or Ribosomal RNA
rRNA is located in the cytoplasm of a cell, where ribosomes are found. rRNA directs the translation of mRNA into proteins.</span><span>tRNA or Transfer RNA
Like rRNA, tRNA is located in the cellular cytoplasm and is involved in protein synthesis. Transfer RNA brings or transfers amino acids to the ribosome that correspond to each three-nucleotide codon of rRNA. The amino acids then can be joined together and processed to make polypeptides and proteins</span>
<span>
</span>
Answer:
please mark as brainliest answer as it will also give you 3 points
Explanation:
Cyclin-dependent kinases (CDKs) are the families of protein kinases first discovered for their role in regulating the cell cycle. They are also involved in regulating transcription, mRNA processing, and the differentiation of nerve cells.[1] They are present in all known eukaryotes, and their regulatory function in the cell cycle has been evolutionarily conserved. In fact, yeast cells can proliferate normally when their CDK gene has been replaced with the homologous human gene.[1][2] CDKs are relatively small proteins, with molecular weights ranging from 34 to 40 kDa, and contain little more than the kinase domain.[1] By definition, a CDK binds a regulatory protein called a cyclin. Without cyclin, CDK has little kinase activity; only the cyclin-CDK complex is an active kinase but its activity can be typically further modulated by phosphorylation and other binding proteins, like p27. CDKs phosphorylate their substrates on serines and threonines, so they are serine-threonine kinases.[1] The consensus sequence for the phosphorylation site in the amino acid sequence of a CDK substrate is [S/T*]PX[K/R], where S/T* is the phosphorylated serine or threonine, P is proline, X is any amino acid, K is lysine, and R is arginine.[1]
<span>The exosphere is the fifth and final layer of the atmosphere. This layer is a little thicker than the theremosphere at 500-1000 km thick.</span>
........................76...............