Recall your d = rt, distance = rate * time
so... hmm if the plane has a still air speed of say "r", when it's going with the wind, is not really going "r" fast, is going "r + 40 ", because the wind is adding 40mph to its speed, is really moving.
and when the plane is going against the wind, is not really going "r" fast either, is going " r - 40 ", because the wind is eroding speed from it.
now, it went 2240 miles for say "t" hours, and it did 1920 miles for the same length of time, "t" hours.

and surely you know how much that is.
Answer:

Step-by-step explanation:
To write the equation of a line, use the slope formula to first find the slope.

Substitute m=1/5 and the point (3,5) into point slope formula.

Answer:
P(5) - P(3) = 4
Step-by-step explanation:
<em>Lets explain how to solve the problem</em>
Assume that P(x) is a linear function, that because the sum of P(2x),
P(4x), and P(6x) is linear ⇒ (24x - 6 is linear)
∵ The form of the linear function is y = ax + b
∴ P(x) = ax + b
Substitute x by 2x
∵ P(2x) = a(2x) + b
∴ P(2x) = 2ax + b
Substitute x by 4x
∵ P(4x) = a(4x) + b
∴ P(4x) = 4ax + b
Substitute x by 6x
∵ P(6x) = a(6x) + b
∴ P(6x) = 6ax + b
Add the three functions
∴ P(2x) + P(4x) + P(6x) = 2ax + b + 4ax + b + 6ax + b
Add like terms
∴ P(2x) + P(4x) + P(6x) = 12ax + 3b ⇒ (1)
∵ P(2x) + P(4x) + P(6x) = 24x - 6 ⇒ (2)
Equate (1) and (2)
∴ 12ax + 3b = 24x - 6
By comparing the two sides
∴ 12a = 24 and 3b = -6
∵ 12a = 24
Divide both sides by 12
∴ a = 2
∵ 3b = -6
Divide both sides by 3
∴ b = -2
Substitute these values in P(x)
∵ P(x) = ax + b
∴ P(x) = 2x + (-2)
∴ P(x) = 2x - 2
Now we can find P(5) - P(3)
∵ P(5) = 2(5) - 2 = 10 - 2 = 8
∵ P(3) = 2(3) - 2 = 6 - 2 = 4
∴ P(5) - P(3) = 8 - 4 = 4
* P(5) - P(3) = 4