Check the picture below.
so the volume will simply be the area of the hexagonal face times the height.
![\textit{area of a regular polygon}\\\\ A=\cfrac{1}{4}ns^2\stackrel{\qquad degrees}{\cot\left( \frac{180}{n} \right)}~~ \begin{cases} n=\stackrel{number~of}{sides}\\ s=\stackrel{length~of}{side}\\[-0.5em] \hrulefill\\ n=6\\ s=12 \end{cases}\implies A=\cfrac{1}{4}(6)(12)^2\cot\left( \frac{180}{6} \right) \\\\\\ A=216\cot(30^o)\implies A=216\sqrt{3} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{area of the hexagon}}{(216\sqrt{3})}~~\stackrel{height}{(10)}\implies 2160\sqrt{3}~~\approx ~~3741.2~cm^3](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B4%7Dns%5E2%5Cstackrel%7B%5Cqquad%20degrees%7D%7B%5Ccot%5Cleft%28%20%5Cfrac%7B180%7D%7Bn%7D%20%5Cright%29%7D~~%20%5Cbegin%7Bcases%7D%20n%3D%5Cstackrel%7Bnumber~of%7D%7Bsides%7D%5C%5C%20s%3D%5Cstackrel%7Blength~of%7D%7Bside%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20n%3D6%5C%5C%20s%3D12%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B4%7D%286%29%2812%29%5E2%5Ccot%5Cleft%28%20%5Cfrac%7B180%7D%7B6%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20A%3D216%5Ccot%2830%5Eo%29%5Cimplies%20A%3D216%5Csqrt%7B3%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20the%20hexagon%7D%7D%7B%28216%5Csqrt%7B3%7D%29%7D~~%5Cstackrel%7Bheight%7D%7B%2810%29%7D%5Cimplies%202160%5Csqrt%7B3%7D~~%5Capprox%20~~3741.2~cm%5E3)
Answer:

Step-by-step explanation:
we know that
Heron's Formula is a method for calculating the area of a triangle when you know the lengths of all three sides.
so

where
a, b and c are the length sides of triangle
s is the semi-perimeter of triangle
we have

<em>Find the semi-perimeter s
</em>
s=
Find the area of triangle



simplify

Answer:
(b - 1) (5b - 6)
Step-by-step explanation:
First, lets create a equation for our situation. Let

be the months. We know four our problem that <span>Eliza started her savings account with $100, and each month she deposits $25 into her account. We can use that information to create a model as follows:
</span>

<span>
We want to find the average value of that function </span>from the 2nd month to the 10th month, so its average value in the interval [2,10]. Remember that the formula for finding the average of a function over an interval is:

. So lets replace the values in our formula to find the average of our function:
![\frac{25(10)+100-[25(2)+100]}{10-2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B25%2810%29%2B100-%5B25%282%29%2B100%5D%7D%7B10-2%7D%20)



We can conclude that <span>the average rate of change in Eliza's account from the 2nd month to the 10th month is $25.</span>
Answer:
Written in standard ratio form-
5.478 : 7.522
other ways of expressing it-
5.478/7.522 or
5.478 to 7.522
Simplified-
0.72826..... as an irrational number