The sector (shaded segment + triangle) makes up 1/3 of the circle (which is evident from the fact that the labeled arc measures 120° and a full circle measures 360°). The circle has radius 96 cm, so its total area is π (96 cm)² = 9216π cm². The area of the sector is then 1/3 • 9216π cm² = 3072π cm².
The triangle is isosceles since two of its legs coincide with the radius of the circle, and the angle between these sides measures 120°, same as the arc it subtends. If b is the length of the third side in the triangle, then by the law of cosines
b² = 2 • (96 cm)² - 2 (96 cm)² cos(120°) ⇒ b = 96√3 cm
Call b the base of this triangle.
The vertex angle is 120°, so the other two angles have measure θ such that
120° + 2θ = 180°
since the interior angles of any triangle sum to 180°. Solve for θ :
2θ = 60°
θ = 30°
Draw an altitude for the triangle that connects the vertex to the base. This cuts the triangle into two smaller right triangles. Let h be the height of all these triangles. Using some trig, we find
tan(30°) = h / (b/2) ⇒ h = 48 cm
Then the area of the triangle is
1/2 bh = 1/2 • (96√3 cm) • (48 cm) = 2304√3 cm²
and the area of the shaded segment is the difference between the area of the sector and the area of the triangle:
3072π cm² - 2304√3 cm² ≈ 5660.3 cm²
Step-by-step explanation:
hope i helped pleae mark brainliest
Answer:
Graph of the inequality 3y-2x>-18 is given below.
Step-by-step explanation:
We are given the inequality, 3y-2x>-18
Now, using the 'Zero Test', which states that,
After substituting the point (0,0) in the inequality, if the result is true, then the solution region is towards the origin. If the result is false, then the solution region is away from the origin'.
So, after substituting (0,0) in 3y-2x>-18, we get,
3\times 0-2\times 0>-18
i.e. 0 > -18, which is true.
Thus, the solution region is towards the origin.
Hence, the graph of the inequality 3y-2x>-18 is given below.
Piecewise Function is like multiple functions with a speific/given domain in one set, or three in one for easier understanding, perhaps.
To evaluate the function, we have to check which value to evalue and which domain is fit or perfect for the three functions.
Since we want to evaluate x = -8 and x = 4. That means x^2 cannot be used because the given domain is less than -8 and 4. For the cube root of x, the domain is given from -8 to 1. That meand we can substitute x = -8 in the cube root function because the cube root contains -8 in domain but can't substitute x = 4 in since it doesn't contain 4 in domain.
Last is the constant function where x ≥ 1. We can substitute x = 4 because it is contained in domain.
Therefore:
![\large{ \begin{cases} f( - 8 ) = \sqrt[3]{ - 8} \\ f(4) = 3 \end{cases}}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%20%5Cbegin%7Bcases%7D%20f%28%20-%208%20%29%20%3D%20%20%20%5Csqrt%5B3%5D%7B%20-%208%7D%20%20%5C%5C%20f%284%29%20%3D%203%20%5Cend%7Bcases%7D%7D)
The nth root of a can contain negative number only if n is an odd number.
![\large{ \begin{cases} f( - 8 ) = \sqrt[3]{ - 2 \times - 2 \times - 2} \\ f(4) = 3 \end{cases}} \\ \large{ \begin{cases} f( - 8 ) = - 2\\ f(4) = 3 \end{cases}}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%20%5Cbegin%7Bcases%7D%20f%28%20-%208%20%29%20%3D%20%20%20%5Csqrt%5B3%5D%7B%20-%202%20%5Ctimes%20-%20%202%20%5Ctimes%20%20%20-%202%7D%20%20%5C%5C%20f%284%29%20%3D%203%20%5Cend%7Bcases%7D%7D%20%5C%5C%20%20%5Clarge%7B%20%20%5Cbegin%7Bcases%7D%20f%28%20-%208%20%29%20%3D%20%20-%202%5C%5C%20f%284%29%20%3D%203%20%5Cend%7Bcases%7D%7D)
Answer
Answer:
50 inches Approx
Step-by-step explanation:
GIven data
Width= 44in
Length= 24in
Diagonal=???
We know that the expression for the diagonal is given as
D^2= W^2+L^2
substitute
D^2= 44^2+24^2
D^2= 1936+576
D^2= 2512
D=√2512
D= 50.11
Hence the size of the TV is 50 inches Approx