Answer:
31 , 59
Step-by-step explanation:
a = b +28
a + b = 90 {Complementary}
b + 28 + b = 90 {Combine like terms}
2b + 28 = 90 {Subtract 28 form both sides}
2b = 90 - 28
2b = 62 {Divide both sides by 2}
b = 62/2
b = 31
a = 31 + 28
a = 59
What is probability rolling a number greater than 4?
The only numbers there are is 5 and 6.
That means that there are 2 outcomes out of 6 total outcomes.
That would be 2/6.
Divide the the top and bottom by 2.
In simplest form it would be 1/3.
2/6=1/3
The answer is 1/3. The probability of throwing a number greater than 4 is 1/3.
Answer: 693
it is 693 because...
I couldn't really explain with words so I gave you a step by step of my work.
Answer:
down below.
Step-by-step explanation:
20 × 400 = 8000
8000 - 7200 = 800
therefore the % mark up is 10%, because 10% of 8000 is 800.
800 + 7200 = 8000
the solid is made up of 2 regular octagons, 8 sides, joined up by 8 rectangles, one on each side towards the other octagonal face.
from the figure, we can see that the apothem is 5 for the octagons, and since each side is 3 cm long, the perimeter of one octagon is 3*8 = 24.
the standing up sides are simply rectangles of 8x3.
if we can just get the area of all those ten figures, and sum them up, that'd be the area of the solid.
![\bf \textit{area of a regular polygon}\\\\ A=\cfrac{1}{2}ap~~ \begin{cases} a=apothem\\ p=perimeter\\[-0.5em] \hrulefill\\ a=5\\ p=24 \end{cases}\implies A=\cfrac{1}{2}(5)(24)\implies \stackrel{\textit{just for one octagon}}{A=60} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{\textit{two octagon's area}}{2(60)}~~+~~\stackrel{\textit{eight rectangle's area}}{8(3\cdot 8)}\implies 120+192\implies 312](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7Dap~~%20%5Cbegin%7Bcases%7D%20a%3Dapothem%5C%5C%20p%3Dperimeter%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D5%5C%5C%20p%3D24%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%285%29%2824%29%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bjust%20for%20one%20octagon%7D%7D%7BA%3D60%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Btwo%20octagon%27s%20area%7D%7D%7B2%2860%29%7D~~%2B~~%5Cstackrel%7B%5Ctextit%7Beight%20rectangle%27s%20area%7D%7D%7B8%283%5Ccdot%208%29%7D%5Cimplies%20120%2B192%5Cimplies%20312)