Answer:
x = 2
Step-by-step explanation:
These equations are solved easily using a graphing calculator. The attachment shows the one solution is x=2.
__
<h3>Squaring</h3>
The usual way to solve these algebraically is to isolate radicals and square the equation until the radicals go away. Then solve the resulting polynomial. Here, that results in a quadratic with two solutions. One of those is extraneous, as is often the case when this solution method is used.

The solutions to this equation are the values of x that make the factors zero: x=2 and x=-1. When we check these in the original equation, we find that x=-1 does not work. It is an extraneous solution.
x = -1: √(-1+2) +1 = √(3(-1)+3) ⇒ 1+1 = 0 . . . . not true
x = 2: √(2+2) +1 = √(3(2) +3) ⇒ 2 +1 = 3 . . . . true . . . x = 2 is the solution
__
<h3>Substitution</h3>
Another way to solve this is using substitution for one of the radicals. We choose ...

Solutions to this equation are ...
u = 2, u = -1 . . . . . . the above restriction on u mean u=-1 is not a solution
The value of x is ...
x = u² -2 = 2² -2
x = 2 . . . . the solution to the equation
_____
<em>Additional comment</em>
Using substitution may be a little more work, as you have to solve for x in terms of the substituted variable. It still requires two squarings: one to find the value of x in terms of u, and another to eliminate the remaining radical. The advantage seems to be that the extraneous solution is made more obvious by the restriction on the value of u.
Answer:
ans= 45.6
Step-by-step explanation:
I think the ans is 45.6
I hope it will help u...
Models can be used to describe, extend, and make generalizations about certain mathematical situations.
Answer:
La respuesta esta abajo
Step-by-step explanation:
La pregunta no está completa porque no contiene gráficos, pero te mostraré cómo responderla.
La ecuación de un gráfico de línea recta viene dada por:
y = mx + b; donde y y x son variables, m es la pendiente de la gráfica y b es la intersección en y (que es el valor de y cuando x es 0)
Dado que la ecuación de la gráfica es y = mx, comparando con la ecuación de una línea recta (y = mx + b), podemos concluir que la gráfica con una ecuación y = mx, tiene una pendiente de my una intersección con y de 0.
Esto significa que la gráfica pasa por el origen sin tocar el eje y. Además, la gráfica tiene una pendiente positiva.
Answer:
11
Step-by-step explanation: