Answer:
B) Multicellular Simple gland
Explanation:
Exocrine Glands:Glands that secrete their products onto the apical(or epithelia) surface directly or via epithelial ducts or tubes that are connected to the apical surface. These Exocrine glands are composed of highly specialized epithelial cells..
Exocrine glands can either be branched or Unbranched based on the arrangement.
*Multicellular simple glands*:Glands that have an *unbranched duct* into which cells secrete. Each secretory portion empties separately on an epithelial surface.
Answer and Explanation:
The steps of the sliding filament theory are:
Muscle activation: breakdown of energy (ATP) by myosin.
Before contraction begins, myosin is only associated with a molecule of energy (ATP), which myosin breaks down into its component molecules (ADP + P) causing myosin to change shape.
Muscle contraction: cross-bridge formation
The shape change allows myosin to bind an adjacent actin, creating a cross-bridge.
Recharging: power (pulling) stroke
The cross-bridge formation causes myosin to release ADP+P, change shape, and to pull (slide) actin closer to the center of the myosin molecule.
Relaxaction: cross-bridge detachment
The completion of the pulling stroke further changes the shape of myosin. This allows myosin and ATP to bind, which causes myosin to release actin, destroying the cross-bridge. The cycle is now ready to begin again.
The repeated cycling through these steps generates force (i.e., step 2: cross-bridge formation) and changes in muscle length (i.e., step 3: power stroke), which are necessary to muscle contraction.
Answer/Explanation:
<h3>Incomplete dominance</h3>
In incomplete dominance, one allele is not entirely dominant over the other, so heterozygotes (organisms with two different alleles for the gene) show an intermediate or blended phenotype.
For example, consider flower colour.
- If the allele for red flowers (R) was dominant over the allele for white flowers (r), then there are three possible genotypes (RR, Rr, and rr) and two possible phenotypes. (Red (RR and Rr) and white (rr)).
- However, if the allele for red flowers (R) was incompletely dominant over the allele for white flowers (r), then there are three possible genotypes (RR, Rr, rr), and three possible phenotypes (red (RR), white (rr), and pink (Rr))
<h3>Co-dominance</h3>
In incomplete dominance, two alleles are both expressed, one is not dominant over the other. Therefore, heterozygotes (organisms with two different alleles for the gene) express both traits.
For example, consider flower patterns.
- If the allele for spots (F) was dominant over the allele for stripes (f), then there are three possible genotypes (FF, Ff, and ff) and two possible phenotypes. (Spots (Ff and ff) and stripes (ff)).
- However, if the allele for spots (F) was co-dominant to the allele for stripes (f), then there are three possible genotypes (FF, Ff, ff), and three possible phenotypes (spots (FF), stripes (ff), and spots and stripes (Ff))
B. Roundworms<span>.
The Protostome organisms are subclustered into three main groups,
moreover nematoda or roundworms belongs to the Ecdysozoa group.</span>
<span>Roundworms are organisms that are diverse and almost in clustered to many other ecosystems and environment.
These
Protostome includes mollusks, annelids, and arthropods
</span>
It's Glycolysis
Hope this helps :)