Get rid of all common factors.
36/4 = 9
x^9/x^7 = x^2
y^4/y^3 = y
Answer:
1) 20.9
2) 896
3) 21
Step-by-step explanation:
1) 5.6÷2^3+(12.75+7.45)
---> 12.75 + 7.45 = 20.2
÷ 
--> Simplify 2^3 to 8
÷ 8 + 20.2
--> 5.6 ÷ 8 = 0.7

--> Simplify

2) 4^3 × (0.6 +3.6) ÷ 0.3
---> 0.6 + 3.6 = 4.2
4^3 * 4.2 ÷ 0.3
---> 4^3 = 64
64 * 4.2 ÷ 0.3
--> 64 * 4.2 = 268.8
268.8 ÷ 0.3
--> 268.8 ÷ 0.3 = 896
896
3) 2^4 + (2.75 +1.75) ÷ 0.9
--> 2.75 + 1.75 = 4.5
2^4 + 4.5 ÷ 0.9
--> 2^4 = 16
16 + 4.5 ÷ 0.9
--> 4.5 ÷ 0.89 = 5
16 + 5
--> Simplify
= 21
Answer:
The expected monetary value of a single roll is $1.17.
Step-by-step explanation:
The sample space of rolling a die is:
S = {1, 2, 3, 4, 5 and 6}
The probability of rolling any of the six numbers is same, i.e.
P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 
The expected pay for rolling the numbers are as follows:
E (X = 1) = $3
E (X = 2) = $0
E (X = 3) = $0
E (X = 4) = $0
E (X = 5) = $0
E (X = 6) = $4
The expected value of an experiment is:

Compute the expected monetary value of a single roll as follows:
![E(X)=\sum x\cdot P(X=x)\\=[E(X=1)\times \frac{1}{6}]+[E(X=2)\times \frac{1}{6}]+[E(X=3)\times \frac{1}{6}]\\+[E(X=4)\times \frac{1}{6}]+[E(X=5)\times \frac{1}{6}]+[E(X=6)\times \frac{1}{6}]\\=[3\times \frac{1}{6}]+[0\times \frac{1}{6}]+[0\times \frac{1}{6}]\\+[0\times \frac{1}{6}]+[0\times \frac{1}{6}]+[4\times \frac{1}{6}]\\=1.17](https://tex.z-dn.net/?f=E%28X%29%3D%5Csum%20x%5Ccdot%20P%28X%3Dx%29%5C%5C%3D%5BE%28X%3D1%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D2%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D3%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%2B%5BE%28X%3D4%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D5%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D6%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%3D%5B3%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B4%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%3D1.17)
Thus, the expected monetary value of a single roll is $1.17.
Answer:
The probability of an event will not be less than 0. This is because 0 is impossible (sure that something will not happen). The probability of an event will not be more than 1. This is because 1 is certain that something will happen.
Step-by-step explanation:
hope dis helps ^-^