Answer: A
Step-by-step explanation:
The pyramid's sides is twice as big so x is twice as big too
Answer:
24 units
Step-by-step explanation:
A triangle was dilated by a scale factor of 6. If sin a° = four fifths and segment DE measures 30 units, how long is segment EF?
triangle DEF in which angle F is a right angle, angle D measures a degrees, and angle E measures b degrees
15.5 units
24 units
30 units
37.5 units
From the description:
angle D measures a degrees
opposite to angle D is side EF
side DE (which measures 30 units) is the hypotenuse of the triangle.
We also know that
![\sin (a) = \frac{4}{5}](https://tex.z-dn.net/?f=%5Csin%20%28a%29%20%3D%20%5Cfrac%7B4%7D%7B5%7D)
![\sin (a) = \frac{opposite}{hypotenuse}](https://tex.z-dn.net/?f=%5Csin%20%28a%29%20%3D%20%5Cfrac%7Bopposite%7D%7Bhypotenuse%7D)
From definition:
![\sin (a) = \frac{opposite}{hypotenuse}](https://tex.z-dn.net/?f=%5Csin%20%28a%29%20%3D%20%5Cfrac%7Bopposite%7D%7Bhypotenuse%7D)
Replacing:
![\frac{4}{5} =\frac{ EF}{DE} \\\\EF = \frac{4}{5} *DE\\\\EF = \frac{4}{5} *30 \\\\= 24 units](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B5%7D%20%3D%5Cfrac%7B%20EF%7D%7BDE%7D%20%5C%5C%5C%5CEF%20%3D%20%5Cfrac%7B4%7D%7B5%7D%20%2ADE%5C%5C%5C%5CEF%20%3D%20%5Cfrac%7B4%7D%7B5%7D%20%2A30%20%5C%5C%5C%5C%3D%2024%20units)
Answer:
Hi there.....
Step-by-step explanation:
This is ur answer......
1, 3, 5, 7, 9, 11, 13, 15.................39
Therefore the total sum = 400
hope it helps you,
mark me as the brainliest....
Follow me......
Answer:
Part A: 15 and 100 are the coefficients!
Part B: Two terms in the expression!
Step-by-step explanation:
Answer:
![(AB)^T = B^T.A^T (Proved)](https://tex.z-dn.net/?f=%28AB%29%5ET%20%3D%20B%5ET.A%5ET%20%20%28Proved%29)
Step-by-step explanation:
Given (AB )^T= B^T. A^T;
To prove this expression, we need to apply multiplication law, power law and division law of indices respectively, as shown below.
![(AB)^T = B^T.A^T\\\\Start, from \ Right \ hand \ side\\\\B^T.A^T = \frac{B^T.A^T}{A^T}.\frac{B^T.A^T}{B^T} (multiply \ through) \\\\ = \frac{A^{2T}.B^{2T}}{A^T.B^T} \\\\=\frac{(AB)^{2T}}{(AB)^T} \ \ (factor \ out \ the power)\\\\= (AB)^{2T-T} \ (apply \ division \ law \ of \ indices; \ \frac{x^a}{x^b} = x^{a-b})\\\\= (AB)^T \ (Proved)](https://tex.z-dn.net/?f=%28AB%29%5ET%20%3D%20B%5ET.A%5ET%5C%5C%5C%5CStart%2C%20from%20%5C%20Right%20%5C%20hand%20%5C%20side%5C%5C%5C%5CB%5ET.A%5ET%20%3D%20%5Cfrac%7BB%5ET.A%5ET%7D%7BA%5ET%7D.%5Cfrac%7BB%5ET.A%5ET%7D%7BB%5ET%7D%20%28multiply%20%5C%20through%29%20%5C%5C%5C%5C%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3D%20%5Cfrac%7BA%5E%7B2T%7D.B%5E%7B2T%7D%7D%7BA%5ET.B%5ET%7D%20%5C%5C%5C%5C%3D%5Cfrac%7B%28AB%29%5E%7B2T%7D%7D%7B%28AB%29%5ET%7D%20%5C%20%5C%20%28factor%20%5C%20out%20%5C%20the%20power%29%5C%5C%5C%5C%3D%20%28AB%29%5E%7B2T-T%7D%20%20%5C%20%28apply%20%5C%20division%20%5C%20law%20%5C%20of%20%5C%20indices%3B%20%5C%20%5Cfrac%7Bx%5Ea%7D%7Bx%5Eb%7D%20%3D%20x%5E%7Ba-b%7D%29%5C%5C%5C%5C%3D%20%28AB%29%5ET%20%5C%20%28Proved%29)