20,000J. Use the formula, KE=1/2mv^2 in order to show work
Answer:
0.779 mol
Explanation:
Since the gas is in a bottle, the volume of the gas is constant. Assuming the temperature remains constant as well, then the gas pressure is proportional to the number of moles:

so we can write

where
p1 = 730 mm Hg = 0.96 atm is the initial pressure
n1 = 0.650 mol is the initial number of moles
p2 = 1.15 atm is the final pressure
n2 is the final number of moles
Solving for n2,

When watching the stars at night, they do appear to move very slowly. This is because the Earth is constantly moving. The Earth completes
Answer:
Explanation:
a) Hardness is a measure of the resistance of a material to permanent deformation (plastic) on its surface,
Hardness tests play an important role in material testing, quality control and component acceptance.
Hardness test are needed to be perform as a <em>quality assurance procedure</em>, to validate materials are according to the specific hardness required,
We depend on the data to verify the quality of the components to determine if a material has the necessary properties for its intended use.
Through the years, the establishment of increasingly productive and effective means of testing, has given way to new cutting-edge methods that perform and interpret hardness tests more effectively than ever. The result is a greater capacity and dependence on "letting the instrument do the work", contributing to substantial increases in performance and consistency and continuing to make hardness tests very useful in industrial and R&D applications.
b)
- <u>Instrumental errors</u>: Instrument calibration is extremely important. An instrument with expired calibration may be generating erroneous data systematically.
- <u>Enviromental error: </u>An example is when surface preparation of the sample to be tested is poor, then the error can be presented when measuring the indentation on the sample to determine the hardness value.
Answer:
9.4 m/s
Explanation:
According to the work-energy theorem, the work done by external forces on a system is equal to the change in kinetic energy of the system.
Therefore we can write:

where in this case:
W = -36,733 J is the work done by the parachute (negative because it is opposite to the motion)
is the initial kinetic energy of the car
is the final kinetic energy
Solving,

The final kinetic energy of the car can be written as

where
m = 661 kg is its mass
v is its final speed
Solving for v,
