Answer:
See explanation
Explanation:
The acceleration due to gravity on an object is independent of the mass of the object. This is so because, the acceleration due to gravity depends only on the radius of the earth and the mass of the earth.
As a result of this, all objects are accelerated to the same extent and should reach the ground at the same time when released from a height as long as other forces other than gravity are not at work.
The answer is either C or D.
The equator is warmer than the poles because the equator is closer to the sun. In other words, the sun is overhead the equator, which is a result of the Earth's curvature.
Answer:
t< 75 nm
Explanation:
A soap bubble is a thin film where when the beam enters the film it has a 180º phase change due to the refractive index and the wavelength changes between
λ = λ₀ / n
In the case of constructive interference in the curve of the spherical film it is
2 nt = (m + ½) λ₀
Where t is the thickness of the film and n the refractive index that does not indicate that we use that of water n = 1.33, m is an integer. The thickness of the film for the first interference (m = 0) is
t = λ₀ / 4 n
A thickness less than this gives destructive interference.
Let's look for the thickness for the visible spectrum
Violet light λ₀ = 400 nm = 400 10⁻⁹ m
t₁ = 400 10⁻⁹ / 4 1.33
t₁ = 75.2 10-9 m
Red light λ₀ = 700 nm = 700 10⁻⁹ m
t₂ = 700 10⁻⁹ / 4 1.33
t₂ = 131.6 10⁻⁹ m
Therefore, for all wavelengths to have destructive interference, the thickness must be less than 75 10⁻⁹ m = 75 nm
b) a film like eta is very thin, it is achieved when gravity thins the pomp, but any movement or burst of air breaks it,
<span>heat capacity→ water has a high heat capacity, and salt water has an even higher one, so the temperatures of the oceans remain within a small range because As the heat rises you get more evaporation which actually cools the ocean down (Specific Heat of Water; Heat needed to break down hydrogen bonds)</span>