Answer:
x' = 1.01 m
Explanation:
given,
mass suspended on the spring, m = 0.40 Kg
stretches to distance, x = 10 cm = 0. 1 m
now,
we know
m g = k x
where k is spring constant
0.4 x 9.8 = k x 0.1
k = 39.2 N/m
now, when second mass is attached to the spring work is equal to 20 J
work done by the spring is equal to


x'² = 1.0204
x' = 1.01 m
hence, the spring is stretched to 1.01 m from the second mass.
Answer:
1: a all of the above
2: b earth tones
3: b doors
4: c industrial
5: d door levers
6: a walk in shower
7: b cork
8: a basic counter tops that are easily accessible
Explanation:
I took the test and got 100%
Answer:
1450.4 KN
Explanation:
Pressure = ρhg
where: ρ is the density of the liquid, h is the height and g the force of gravity.
Total pressure exerted by the liquids at the base = Pressure of oil + Pressure of water + Pressure of mercury
So that,
i. Pressure of oil = ρhg
(ρ = 0.8 g/cm³ = 800 kg/m³)
= 800 x 5 x 9.8
= 39200
Pressure of oil = 39200 N
ii. Pressure of water = ρhg
(ρ = 1 g/cm³ = 1000 kg/m³)
= 1000 x 8 x 9.8
= 78400
Pressure of water = 78400 N
ii. Pressure of mercury = ρhg
(ρ = 13.6 g/cm³ = 13600 kg/m³)
= 13600 x 10 x 9.8
= 1332800
Pressure of mercury = 1332800 N
So that,
Total pressure exerted by the liquids at the base = 39200 + 78400 + 1332800
= 1450400
= 1450.4 KN
Total pressure exerted by the liquids at the base is 1450.4 KN
.
The work done by friction to move the sled is - 1,323 J.
<h3>
What is Coefficient of friction?</h3>
- The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them.
- Typically, it is represented by the Greek letter µ. In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.
- The coefficient of friction has no dimensions because both F and N are measured in units of force (such as newtons or pounds). For both static and kinetic friction, the coefficient of friction has a range of values.
- When an object experiences static friction, the frictional force resists any applied force, causing the object to stay at rest until the static frictional force is removed. The frictional force opposes an object's motion in kinetic friction.
Solution:
Given that
Coefficient of friction (µ) = 0.10
Mass (m) = 90kg
distance covered (d) = 30m
We use the formula:
friction work = -µmgdcos∅
friction work = -0.100 × 90 kg × 9.8 m/s² × 30 m × cos 60°
friction work = - 1,323 J
Know more about Coefficient of friction numerical brainly.com/question/19308401
#SPJ4
Answer:
1.07 m
Explanation:
x = Compression of the spring
k = Spring constant = 53 N/m
Initial length = 18 cm
P = Kinetic energy
K = Kinetic energy
At the lowest point of the mass the energy conservation is as follows

At its lowest position the mark on the ruler will be

The spring line will end up at 1.07 m