Answer:
0.025 A
Explanation:
A = 50 cm^2 = 50 x 10^-4 m^2
B2 = 6 T, B1 = 2 T
db = 6 - 2 = 4 T
dt = 2 s
R = 0.4 ohm
Let i be the magnitude of induced current and e be the induced emf.
According to the Faraday's law of electromagnetic induction
e = dФ / dt
e = A dB / dt
e = 50 x 10^-4 x 4 / 2 = 0.01 V
i = e / R = 0.01 / 0.4 = 0.025 A
A. 2 C₂ H₆ + 7 O₂ → 4 C O₂ + 6 H₂ O
according to law of conservation of mass , the total mass of reactants side must be same as the total mass of product side. so we need to check if each atom in the equation has same number on both side of the equation or not.
in this equation , we have
4 atoms of carbon left and 4 atoms of carbon on right
12 atoms of hydrogen on left and 12 atoms of hydrogen on right
14 atoms of oxygen on left and 14 atoms of oxygen on right
Answer:
5.4 ms⁻¹
Explanation:
Here we have to use conservation of energy. Initially when the stick is held vertical, its center of mass is at some height above the ground, hence the stick has some gravitational potential energy. As the stick is allowed to fall, its rotates about one. gravitational potential energy of the stick gets converted into rotational kinetic energy.
= length of the meter stick = 1 m
= mass of the meter stick
= angular speed of the meter stick as it hits the floor
= speed of the other end of the stick
we know that, linear speed and angular speed are related as

= height of center of mass of meter stick above the floor = 
= Moment of inertia of the stick about one end
For a stick, momentof inertia about one end has the formula as

Using conservation of energy
Rotational kinetic energy of the stick = gravitational potential energy

Answer:
<em>The final speed of the vehicle is 36 m/s</em>
Explanation:
<u>Uniform Acceleration</u>
When an object changes its velocity at the same rate, the acceleration is constant.
The relation between the initial and final speeds is:

Where:
vf = Final speed
vo = Initial speed
a = Constant acceleration
t = Elapsed time
The vehicle starts from rest (vo=0) and accelerates at a=4.5 m/s2 for t=8 seconds. The final speed is:


The final speed of the vehicle is 36 m/s
The equation that relates distance, velocities, acceleration, and time is,
d = V₀t + 0.5gt²
where d is distance,
V₀ is the initial velocity,
t is time, and
g is the acceleration due to gravity (equal to 9.8 m/s²)
(1) Dropped rock,
(3 x 10² m ) = 0(t) + 0.5(9.8 m/s²)(t²)
The value of t from this equation is 24.73 s
(2) Thrown rock with V₀ = 26 m/s
(3 x 10² m) = (26)(t) + 0.5(9.8 m/s²)(t²)
The value of t from the equation is 5.61 s
The difference between the tim,
difference = 24.73 s - 5.61 s
difference = 19.12 s
<em>ANSWER: 19.12 s</em>