Answer:
65m
Explanation:
Twelve waves pass a dock in 3.60 If the waves are traveling at 19.5 m/s , what is the wavelength of the waves?
Velocity of a wave is expressed as;
V = frequency × wavelength
Given
Velocity = 19.5m/s
Frequency is the number of oscillations completed in 1sec, hence
Frequency= 3.6/12
Frequency = 0.3
Wavelength = vel/freq
Wavelength = 19.5/0.3
Wavelength = 65m
Answer:
To your left
Explanation:
The direction of the force exerted on charged particle due to a magnetic field is given by the right-hand-rule, where:
- The index finger indicates the direction of motion of the electron
- the middle finger gives the direction of the magnetic field
- the thumb gives the direction of the force if the particle is positively charged - otherwise, the direction is reversed
in this case, we have an electron (so, a negatively charged particle):
- The direction of motion (index finger) is horizontal, toward you
- The electron begins to curve upward as it enters the field, so this means that the force exerted on the electrons is upward --> the thumb must point downward (because the electron is negatively charged)
- The index finger gives us the direction of the magnetic field: therefore, to your left.
Explanation:
The darker the object, the better it emits heat, because it's a better absorber of light. On the other hand, a white object appears white because it reflects all the different wavelengths and absorbs little to no light.
Answer:
Speed of gamma rays = 3 x 10⁸ m/s
Explanation:
Given:
Frequency of gamma ray = 3 x 10¹⁹ Hz
Wavelength of gamma rays = 1 x 10⁻¹¹ meter
Find:
Speed of gamma rays
Computation:
Velocity = Frequency x wavelength
Speed of gamma rays = Frequency of gamma ray x Wavelength of gamma rays
Speed of gamma rays = [3 x 10¹⁹][1 x 10⁻¹¹]
Speed of gamma rays = 3 x [10¹⁹⁻¹¹]
Speed of gamma rays = 3 x [10⁸]
Speed of gamma rays = 3 x 10⁸ m/s
Decreases, stays the same, increases.
The volume decreases because as air is cooled, the individual molecules collectively possess less kinetic energy and the distances between them decrease, thus leading to a decrease in the volume they occupy at a certain pressure (please note that my answer only holds under constant pressure; air, as a gas, doesn't actually have a definite volume).
The mass stays the same because physical processes do not create or destroy matter. The law of conservation of mass is obeyed. You're only cooling the air, not adding more air molecules.
The density decreases because as the volume decreases and mass stays the same, you have the same mass occupying a smaller volume. Density is mass divided by volume, so as mass is held constant and volume decreases, density increases.