Answer: number 1
Explanation: that is when we could first sustain life because that is when we gained atmosphere and when we could hold carbon and oxogen
<span>Narrow junctions and desmosomes have different structures. Narrow junctions are made of a protein arranged inside the membrane. There are many intersecting lines that cause the cells to be sealed and together. Desmosomes contain the protein cadherin. There are cadherins in each cell and they join at this point sealing the cells together, the tight junctions have the function of preventing the materials that circulate between the cells. The desmosomes provide binding sites for the cells to be attached.</span>
Explanation:
Respiration in the mitochondria utilizes oxygen for the production of ATP in the Krebs’ or Citric acid cycle via the oxidization of pyruvate (through the process of glycolysis in the cytoplasm).
overall: C6H12O6 (glucose) + 6 O2 → 6 CO2 + 6 H2O + ≈38 ATP
Further Explanation:
In all eukaryotic cells, mitochondria are small cellular organelles bound by membranes, these make most of the chemical energy required for powering the biochemical reactions within the cell. This chemical energy is stored within the molecule ATP which is produced.
Oxidative phosphorylation follows; this is a process in which the NADH and FADH2 made in previous steps of respiration process give up electrons in the electron transport chain these are converted it to their previous forms, NADH+ and FAD. Electrons continue to move down the chain the energy they release is used in pumping protons out of the matrix of the mitochondria.
This forms a gradient where there is a differential in the number of protons on either side of the membrane the protons flow or re-enter the matrix through the enzyme ATP synthase, which makes the energy storage molecules of ATP from the reduction of ADP. At the end of the electron transport, three molecules of oxygen accept electrons and protons to form molecules of water...
- Glycolysis: occurs in the cytoplasm. 2 molecules of ATP are used to cleave glucose into 2 pyruvates, 4 ATP and 2 electron carrying NADH molecules. (2 ATP are utilized for a net ATP of 2)
- The Citric acid or Kreb's cycle: in the mitochondrial matrix- 6 molecules of CO2 are produced by combining oxygen and the carbon within pyruvate, 2 ATP oxygen molecules, 8 NADH and 2 FADH2.
- The electron transport chain, ETC: in the inner mitochondrial membrane, 34 ATP, electrons combine with H+ split from 10 NADH, 4 FADH2, renewing the number of electron acceptors and 3 oxygen; this forms 6 H2O, 10 NAD+, 4 FAD.
Learn more about cellular life at brainly.com/question/11259903
Learn more about cellular respiration at brainly.com/question/11203046
#LearnWithBrainly
Answer:
Yes, it was.
Explanation:
The data did support the hypothesis because the data given was generalized on the change of light each plant received. The hypothesis was that the plant light would have the greatest amount of growth. The data was the different light types and the hypothesis was which one he inferred would work best.