1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WINSTONCH [101]
3 years ago
13

can somebody please round these numbers to the nearest ten 243, 241, 259, 276, 398, 380, I want to see if I got them right. Than

k you
Mathematics
1 answer:
Helen [10]3 years ago
7 0

240, 240, 260, 280, 400, 380

You might be interested in
How do I find x here?
sdas [7]
When lines cross each other in a triangle from a point to the mid point of the opposite side as shown, AV  is 2 times as long as VF

To solve for X we would have AV = 2*VF

The equation becomes:

3x+6 = 2(x+6)
 
Now we solve for X

3x+6 = 2(x+6)

Distribute the 2 on the right side:

3x + 6 = 2x +12

Subtract 2x from each side:

X +6 = 12

Subtract 6 from each side:

x = 6


 Now if you needed to solve the length of AV or VF, you replace x with 6 and solve.




4 0
3 years ago
You are given 4 matrices M1, M2, M3, M4 and you are asked to determine the optimal schedule for the product M1 ×M2 × M3 ×M4 that
alexandr1967 [171]

Answer:

Step-by-step explanation:

first method is to try out all possible combinations and pick out the best one which has the minimum operations but that would be infeasible method if the no of matrices increases  

so the best method would be using the dynamic programming approach.

A1 = 100 x 50

A2 = 50 x 200

A3 = 200 x 50

A4 = 50 x 10

Table M can be filled using the following formula

Ai(m,n)

Aj(n,k)

M[i,j]=m*n*k

The matrix should be filled diagonally i.e., filled in this order

(1,1),(2,2)(3,3)(4,4)

(2,1)(3,2)(4,3)

(3,1)(4,2)

(4,1)

<u>                  Table M[i, j]                                             </u>

             1                      2                  3                    4

4    250000          200000        100000                0  

3      

750000        500000            0

2      1000000             0

1            

0

Table S can filled this way

Min(m[(Ai*Aj),(Ak)],m[(Ai)(Aj*Ak)])

The matrix which is divided to get the minimum calculation is selected.

Table S[i, j]

           1          2         3        

4

4          1           2         3

3          

1          2

2            1

1

After getting the S table the element which is present in (4,1) is key for dividing.

So the matrix multiplication chain will be (A1 (A2 * A3 * A4))

Now the element in (4,2) is 2 so it is the key for dividing the chain

So the matrix multiplication chain will be (A1 (A2 ( A3 * A4 )))

Min number of multiplications: 250000

Optimal multiplication order: (A1 (A2 ( A3 * A4 )))

to get these calculations perform automatically we can use java

code:

public class MatrixMult

{

public static int[][] m;

public static int[][] s;

public static void main(String[] args)

{

int[] p = getMatrixSizes(args);

int n = p.length-1;

if (n < 2 || n > 15)

{

System.out.println("Wrong input");

System.exit(0);

}

System.out.println("######Using a recursive non Dyn. Prog. method:");

int mm = RMC(p, 1, n);

System.out.println("Min number of multiplications: " + mm + "\n");

System.out.println("######Using bottom-top Dyn. Prog. method:");

MCO(p);

System.out.println("Table of m[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%5d ", i);

System.out.print("\n---+");

for (int i=1; i<=6*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=1; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j; i++)

System.out.printf("%5d ", m[i][j]);

System.out.println();

}

System.out.println("Min number of multiplications: " + m[1][n] + "\n");

System.out.println("Table of s[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%2d ", i);

System.out.print("\n---+");

for (int i=1; i<=3*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=2; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j-1; i++)

System.out.printf("%2d ", s[i][j]);

System.out.println();

}

System.out.print("Optimal multiplication order: ");

MCM(s, 1, n);

System.out.println("\n");

System.out.println("######Using top-bottom Dyn. Prog. method:");

mm = MMC(p);

System.out.println("Min number of multiplications: " + mm);

}

public static int RMC(int[] p, int i, int j)

{

if (i == j) return(0);

int m_ij = Integer.MAX_VALUE;

for (int k=i; k<j; k++)

{

int q = RMC(p, i, k) + RMC(p, k+1, j) + p[i-1]*p[k]*p[j];

if (q < m_ij)

m_ij = q;

}

return(m_ij);

}

public static void MCO(int[] p)

{

int n = p.length-1;     // # of matrices in the product

m    =    new    int[n+1][n+1];        //    create    and    automatically initialize array m

s = new int[n+1][n+1];

for (int l=2; l<=n; l++)

{

for (int i=1; i<=n-l+1; i++)

{

int j=i+l-1;

m[i][j] = Integer.MAX_VALUE;

for (int k=i; k<=j-1; k++)

{

int q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];

if (q < m[i][j])

{

m[i][j] = q;

s[i][j] = k;

}

}

}

}

}

public static void MCM(int[][] s, int i, int j)

{

if (i == j) System.out.print("A_" + i);

else

{

System.out.print("(");

MCM(s, i, s[i][j]);

MCM(s, s[i][j]+1, j);

System.out.print(")");

}

}

public static int MMC(int[] p)

{

int n = p.length-1;

m = new int[n+1][n+1];

for (int i=0; i<=n; i++)

for (int j=i; j<=n; j++)

m[i][j] = Integer.MAX_VALUE;

return(LC(p, 1, n));

}

public static int LC(int[] p, int i, int j)

{

if (m[i][j] < Integer.MAX_VALUE) return(m[i][j]);

if (i == j) m[i][j] = 0;

else

{

for (int k=i; k<j; k++)

{

int   q   =   LC(p,   i,   k)   +   LC(p,   k+1,   j)   +   p[i-1]*p[k]*p[j];

if (q < m[i][j])

m[i][j] = q;

}

}

return(m[i][j]);

}

public static int[] getMatrixSizes(String[] ss)

{

int k = ss.length;

if (k == 0)

{

System.out.println("No        matrix        dimensions        entered");

System.exit(0);

}

int[] p = new int[k];

for (int i=0; i<k; i++)

{

try

{

p[i] = Integer.parseInt(ss[i]);

if (p[i] <= 0)

{

System.out.println("Illegal input number " + k);

System.exit(0);

}

}

catch(NumberFormatException e)

{

System.out.println("Illegal input token " + ss[i]);

System.exit(0);

}

}

return(p);

}

}

output:

7 0
3 years ago
Harry is trying to solve the equation y = 2x^2 − x − 6 using the quadratic formula. He has made an error in one of the steps bel
Bond [772]
He made a mistake in step #2. It seemed to be a trivial mistake because it involved signs, but it still had a great impact. Since step#2, his solution was already wrong.

Instead of
(-1)²-4(2)(-6) = 1 + 48 = 49

What he did is
(-1)²-4(2)(-6) = -1 + 48 = 47
4 0
3 years ago
How many #5 cans of potato salad are required to serve 210 people if each can has 3 pounds 8 ounces of potato salad and each ser
9966 [12]
210 times 5 then divided by 3.8
so rounding up, 277 cans
5 0
3 years ago
The Honda Accord was named the best midsized car for resale value for by the Kelley Blue Book (Kelley Blue Book website). The fi
Marianna [84]

Answer:

hello your question is incomplete below is the complete question

The Honda Accord was named the best midsized car for resale value for by the Kelley Blue Book (Kelley Blue Book website). The file AutoResale contains mileage, age, and selling price for a sample of 33 Honda Accords. Click on the datafile logo to reference the data. The estimated regression equation is Selling price = 20385.25049 - 0.03739 Mileage - 686.33668 age. Round your answers to the nearest dollar. a. Estimate the selling price of a four-year-old Honda Accord with mileage of 40,000 miles.

answer :  ≈ $16144

Step-by-step explanation:

<u>Determine the selling price of a four-year-old Honda Accord with mileage of </u><u>40,000</u><u> miles.</u>

Given data :

Age= 4 year, Mileage=40,000 miles

Hence the selling price

= 20385.25049 - 0.03739 Mileage - 686.33668 age

=  20385.25049 - 0.03739(40,000)  - 686.33668 ( 4 )

= $16144.32

 

4 0
3 years ago
Other questions:
  • On a number line, suppose the coordinate of A is 0 and AR=3. What are possible coordinates of the midpoint of AR?
    15·1 answer
  • 3/4x-5/6=2/3x. Solve for x.
    7·1 answer
  • Carlos spent 1 1/4 hours doing his math homework he spent 1/4 of his time practicing his multiplication facts how many hours to
    7·2 answers
  • The partners at an investment firm want to know which of their two star financial planners, Brayden or Zoe, produced a higher me
    14·1 answer
  • A basketball team scored 78 points in a game. The players made 6 baskets worth 1 point each and 27 baskets worth 2 points each.
    8·1 answer
  • -8c - 6 less than or equal to 10
    13·1 answer
  • Which hook should Riya buy?
    14·1 answer
  • Sin theta = 9/15. Find tan theta. A. 15/12. B. 9/12 C. 12/15 D. 12/9
    12·1 answer
  • -2x-9y=-25 -4x-9y=-23<br> I need there to be a step-by-step explanation of how you solved it.
    6·1 answer
  • A square room has an area of 200 square feet. how long is each wall? show your work to explain why
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!