Answer:
Since students need at least a C for the grade to transferdes that are less than C into one category instead of grouping D's and F's separately. How many ...
Answer:
12
Step-by-step explanation:
Answer:
7:36
Step-by-step explanation:
Parallel lines have the same slope.
To compare the slopes of two different lines, you have to get
both equations into the form of
y = 'm' x + (a number) .
In that form, the 'm' is the slope of the line.
Notice that it's the number next to the 'x' .
The equation given in the question is y = 3 - 2 x .
Right away, they've done something to confuse you.
You always expect the 'x' term to be right after the 'equals' sign,
but here, they put it at the end. The slope of this line is the -2 .
Go through the choices, one at a time.
Look for another one with a slope of -2 .
Remember, rearrange the equation to read ' y = everything else ',
and then the slope is the number next to the 'x'.
Choice #4: y = 4x - 2 . The slope is 4 . That's not it.
Choice #3: y = 3 - 4x . The slope is -4 . That's not it.
Choice #2). 2x + 4y = 1
Subtract 2x from each side: 4y = 1 - 2x
Divide each side by 4 : y = 1/4 - 1/2 x .
The slope is -1/2. That's not it.
Choice #1). 4x + 2y = 5
Subtract 4x from each side: 2y = 5 - 4x
Divide each side by 2 : y = 5/2 - 2 x .
The slope is -2 .
This one is it.
This one is parallel to y = 3 - 2x ,
because they have the same slope.
Answer:
So to maximize profit 24 downhill and 20 cross country shouldbe produced
Step-by-step explanation:
Let X be the number of downhill skis and Y the number of cross country skis.
Time required for manufacturing and finishing each ski are: manufacturing time per ski, downhill 2.5 hours, cross country 1.5 hours
Finishing time per ski: downhill 0.5 hours, cross country 1.5 hours.
Total manufacturing time taken = (2.5) x+ (1.5+) y = 2.5x+1.5y≤90
total finishing time taken = 0.5x+1.5 y≤42
Profit function
Z = 50x+50y
Objective is to maximize Z
Solving the two equations we get intersecting point is
(x,y) = (24,20)
In the feasible region corner points are (0.28) (36,0)
Profit for these points are
i) 2200 for (24,20)
ii) 1400 for (0,28)
iii) 1800 for (36,0)
So to maximize profit 24 downhill and 20 cross country shouldbe produced.