The procedure of dialysis maintains the body in balance by withdrawing waste, extra water, and salt by preventing them from accumulating up in the body when the kidneys fail. It helps in maintaining a safe level of some kinds of chemicals in the blood, like sodium, potassium, and bicarbonate. It helps in monitoring blood pressure.
Hence, dialysis helps in performing a function for the circulatory system of the body.
Answer:
<em><u>Glycolysis produces pyruvate, ATP, and NADH by oxidizing glucose.</u></em>
Explanation:
Glycolysis is an oxidation reaction in which glucose reacts with oxygen molecules and oxidized. By oxidizing glucose, it produces pyruvate, adenosine triphosphate (ATP) and nicotinamide adenine dinucleotides (NADH). Glycolysis has two phases. In the first phase, 2 ATP molecules are invested for the phosphorylation of glucose to break down into a simpler one. In the second phase of glycolysis, 4 ATP molecules are earned back with 2 NADH and a simpler form of glucose (6C) to pyruvate (3C) by oxidizing glucose.
The Griffith's experiment, the Avery-MacLeod-McCarty experiment, and the Hershey–Chase experiments were the set of experiments that established DNA as the key hereditary molecule. The Avery-MacLeod-McCarty experiment was an extension to the Griffith's experiment. The heat killed virulent S strain cells of the Griffith's experiment were lysed to form a supernatant containing a mix of RNA, DNA, proteins and lipids from the cell. The supernatent was equally divided into 3 parts after the removal of the lipids. The 3 parts were respectively treated with an RNAase to degrade the RNA, DNAase to degrade the DNA and proteinase to degrade the proteins. The treated supernatant was then added into the culture containing the non-virulent R cells. In case of the supernatant treated with the DNAse, no transformation of R cells into S cells occurred. The transformation of R cells to S cells occurred in the proteinase and the RNAse cases. This indicated that DNA was the hereditary molecule and not protein or RNA.

The answer is oropharynx. The oropharynx is the center some portion of the pharynx (throat) behind the mouth. It incorporates the accompanying: Back 33% of the tongue. A delicate sense of taste. Side and back dividers of the throat.