Answer:
G
Step-by-step explanation:
I’ve done this math before so I know I am right.
Answer:
10.9
Step-by-step Explanation:
The Mean Absolute Deviation of a given data set tells us how far apart, on average, each data value is to the mean of the data set.
The smaller the Mean Absolute Deviation of a given data set is, the closer each data value is to the mean. This also implies less variability of the data set.
Invariably, the smaller the M.A.D, which connotes less variability, the more consistent the data set is.
Therefore, a M.A.D of 10.9 represents more consistency than a M.A.D of 15.2
Answer:
A: This polynomial has a degree of 2 , so the equation 12x2+5x−2=0 has two or fewer roots.
B: The quadratic equation 12x2+5x−2=0 has two real solutions, x=−2/3 or x=1/4 , and therefore has two real roots.
Step-by-step explanation:
f(x) = 12x^2 + 5x - 2.
Since this is a quadratic equation, or a polynomial of second degree, one can easily conclude that this equation will have at most 2 roots. At most 2 roots mean that the function can have either 2 roots at maximum or less than 2 roots. Therefore, in the A category, 2nd option is the correct answer (This polynomial has a degree of 2 , so the equation 12x^2 + 5x − 2 = 0 has two or fewer roots).
To find the roots of f(x), set f(x) = 0. Therefore:
12x^2 + 5x - 2 = 0. Solving the question using the mid term breaking method shows that 12*2=24. The factors of 24 whose difference is 5 are 8 and 3. Therefore:
12x^2 + 8x - 3x - 2 = 0.
4x(3x + 2) -1(3x+2) = 0.
(4x-1)(3x+2) = 0.
4x-1 = 0 or 3x+2 = 0.
x = 1/4 or x = -2/3.
It can be seen that f(x) has two distinct real roots. Therefore, in the B category, 1st Option is the correct answer (The quadratic equation 12x2+5x−2=0 has two real solutions, x=−2/3 or x=1/4 , and therefore has two real roots)!!!
Answer:
Step-by-step explanation:
2 + (-3) + 7 = 2 - 3 + 7 = 9 - 3 = 6 <==
a positive multiplied by a negative will be negative
Answer:
A = 325(1.07)^1
Step-by-step explanation:
first one shows an increase of 70%
second one shows a decrease of 7%
Last shows a decrease of 93%