1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dolphi86 [110]
3 years ago
8

What are two ways to describe the integer n on the expression -7 < n < -4?

Mathematics
1 answer:
Alchen [17]3 years ago
4 0
Description 1: "The integer n is between -7 and -4, excluding both endpoints"

Description 2: "The integer n is larger than -7 and smaller than -4"
You might be interested in
1. a single standard number cube is rolled, what is the probability of getting 4 or 5?
True [87]
There are 6 sides on a standard number cube. Numbers are listed on it from 1-6. This being said, 4 and 5 together make up 2/6 of the cube. Since this fraction can be reduced, this leaves us with C. 1/3
5 0
3 years ago
A running track in the shape of an oval is shown. The ends of the track form semicircles. A running track is shown. The left and
Alekssandra [29.7K]

i believe the answer is '324.00.....

8 0
3 years ago
Martin charges $10 for every 5 bags of leaves he rakes. Last weekend, he raked 2 bags of leaves. How much money did he earn?
melisa1 [442]
If 10$-5bags;
2$-1bag;
4$-2bags

Solution: 4$
7 0
3 years ago
Unit Rate is a ratio where the second term of the ratio is ONE.<br><br> TRUE<br> or <br> FALSE
Papessa [141]

Answer:

True

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Pleaseeeee ı dont find the answer
mote1985 [20]

Answer:  y(x) = \sqrt{\frac{7x^{14}}{-2x^7+9}}\\\\

==========================================================

Explanation:

The given differential equation (DE) is

y'-\frac{7}{x}y = \frac{y^3}{x^8}\\\\

Which is the same as

y'-\frac{7}{x}y = \frac{1}{x^8}y^3\\\\

This 2nd DE is in the form y' + P(x)y = Q(x)y^n

where

P(x) = -\frac{7}{x}\\\\Q(x) = \frac{1}{x^8}\\\\n = 3

As the instructions state, we'll use the substitution u = y^{1-n}

We specifically use u = y^{1-n} = y^{1-3} = y^{-2}

-----------------

After making the substitution, we'll end up with this form

\frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x)\\\\

Plugging in the items mentioned, we get:

\frac{du}{dx} + (1-n)P(x)u = (1-n)Q(x)\\\\\frac{du}{dx} + (1-3)*\frac{-7}{x}u = (1-3)\frac{1}{x^8}\\\\\frac{du}{dx} + \frac{14}{x}u = -\frac{2}{x^8}\\\\

We can see that we have a new P(x) and Q(x)

P(x) = \frac{14}{x}\\\\Q(x) = -\frac{2}{x^8}

-------------------

To solve the linear DE \frac{du}{dx} + \frac{14}{x}u = -\frac{2}{x^8}\\\\, we'll need the integrating factor which I'll call m

m(x) = e^{\int P(x) dx} = e^{\int \frac{14}{x}dx} = e^{14\ln(x)}

m(x) = e^{\ln(x^{14})} = x^{14}

We will multiply both sides of the linear DE by this m(x) integrating factor to help with further integration down the road.

\frac{du}{dx} + \frac{14}{x}u = -\frac{2}{x^8}\\\\m(x)*\left(\frac{du}{dx} + \frac{14}{x}u\right) = m(x)*\left(-\frac{2}{x^8}\right)\\\\x^{14}*\frac{du}{dx} + x^{14}*\frac{14}{x}u = x^{14}*\left(-\frac{2}{x^8}\right)\\\\x^{14}*\frac{du}{dx} + 14x^{13}*u = -2x^6\\\\\left(x^{14}*u\right)' = -2x^6\\\\

It might help to think of the product rule being done in reverse.

Now we can integrate both sides to solve for u

\left(x^{14}*u\right)' = -2x^6\\\\\displaystyle \int\left(x^{14}*u\right)'dx = \int -2x^6 dx\\\\\displaystyle x^{14}*u = \frac{-2x^7}{7}+C\\\\\displaystyle u = x^{-14}*\left(\frac{-2x^7}{7}+C\right)\\\\\displaystyle u = x^{-14}*\frac{-2x^7}{7}+Cx^{-14}\\\\\displaystyle u = \frac{-2x^{-7}}{7}+Cx^{-14}\\\\

u = \frac{-2}{7x^7} + \frac{C}{x^{14}}\\\\u = \frac{-2}{7x^7}*\frac{x^7}{x^7} + \frac{C}{x^{14}}*\frac{7}{7}\\\\u = \frac{-2x^7}{7x^{14}} + \frac{7C}{7x^{14}}\\\\u = \frac{-2x^7+7C}{7x^{14}}\\\\

Unfortunately, this isn't the last step. We still need to find y.

Recall that we found u = y^{-2}\\\\

So,

u = \frac{-2x^7+7C}{7x^{14}}\\\\y^{-2} = \frac{-2x^7+7C}{7x^{14}}\\\\y^{2} = \frac{7x^{14}}{-2x^7+7C}

We're told that y(1) = 1. This means plugging x = 1 leads to the output y = 1. So the RHS of the last equation should lead to 1. We'll plug x = 1 into that RHS, set the result equal to 1 and solve for C

\frac{7*1^{14}}{-2*1^7+7C} = 1\\\\\frac{7}{-2+7C} = 1\\\\7 = -2+7C\\\\7+2 = 7C\\\\7C = 9\\\\C = \frac{9}{7}

So,

y^{2} = \frac{7x^{14}}{-2x^7+7C}\\\\y^{2} = \frac{7x^{14}}{-2x^7+7*\frac{9}{7}}\\\\y^{2} = \frac{7x^{14}}{-2x^7+9}\\\\y = \sqrt{\frac{7x^{14}}{-2x^7+9}}\\\\

We go with the positive version of the root because y(1) is positive, which must mean y(x) is positive for all x in the domain.

3 0
2 years ago
Other questions:
  • What is 130% converted into a decimal?
    11·1 answer
  • I need help please?!!!!!
    12·1 answer
  • 49<br> 5<br> as a mixed number.
    6·2 answers
  • Simply the following : 343^1/3
    13·1 answer
  • What is 40(33-11)2^2
    13·1 answer
  • Arianna has a coin collection. She keeps 4 of the coins in her box, which is 10% of the
    12·1 answer
  • 1. 3,742 x 6= help with step by step
    9·1 answer
  • Estimate a 10% tip on a restaurant bill of $75.28.
    13·1 answer
  • Nancy's Diner offers its clients a choice of regular and diet soda. Last night, the diner served 54 regular sodas and 6 diet sod
    7·1 answer
  • Solve the system of equations -6x+5y=0 and −5x+5y=−5 by combining the equations.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!