The scale factor from the small one to the big one is 3
Answer and Step-by-step explanation: <u>Standard</u> <u>form</u> of a quadratic equation is expressed as: y=ax²+bx+c, while <u>vertex</u> <u>form</u> is written as:
y=a(x-h)²+k.
The similarities between standard and vertex forms is that they show if the graph of the equation has a <u>minimum</u> (when a>0) or <u>maximum</u> (a<0) and it's easier to determine the y-intercept: for standard, the value of c is the intercept; for vertex, the value k is the intercept.
The advantage of standard form is that you can determine the product and sum of the equation's roots, which is a method to determine them.
The advantages of vertex form are: easier to find the vertex of the graph, which is the pair (h,k) and the axis of symmetry, which is the value of h.
(a) The "average value" of a function over an interval [a,b] is defined to be
(1/(b-a)) times the integral of f from the limits x= a to x = b.
Now S = 200(5 - 9/(2+t))
The average value of S during the first year (from t = 0 months to t = 12 months) is then:
(1/12) times the integral of 200(5 - 9/(2+t)) from t = 0 to t = 12
or 200/12 times the integral of (5 - 9/(2+t)) from t= 0 to t = 12
This equals 200/12 * (5t -9ln(2+t))
Evaluating this with the limits t= 0 to t = 12 gives:
708.113 units., which is the average value of S(t) during the first year.
(b). We need to find S'(t), and then equate this with the average value.
Now S'(t) = 1800/(t+2)^2
So you're left with solving 1800/(t+2)^2 = 708.113
<span>I'll leave that to you</span>
First list all the terms out.
e^ix = 1 + ix/1! + (ix)^2/2! + (ix)^3/3! ...
Then, we can expand them.
e^ix = 1 + ix/1! + i^2x^2/2! + i^3x^3/3!...
Then, we can use the rules of raising i to a power.
e^ix = 1 + ix - x^2/2! - ix^3/3!...
Then, we can sort all the real and imaginary terms.
e^ix = (1 - x^2/2!...) + i(x - x^3/3!...)
We can simplify this.
e^ix = cos x + i sin x
This is Euler's Formula.
What happens if we put in pi?
x = pi
e^i*pi = cos(pi) + i sin(pi)
cos(pi) = -1
i sin(pi) = 0
e^i*pi = -1 OR e^i*pi + 1 = 0
That is Euler's identity.