Answer:
13 over 3
Step-by-step explanation:
Hi Jakeyriabryant! I hope you’re fine!
I hope I have understood the problem well.
If so, what the exercise raises is the following equality:
(x-1) / 5 = 2/3
From this equation you must clear the "x".
First, we pass the 5 that is dividing on the side of the x, to the other side and passes multiplying
(X – 1) / 5 = 2/3
(X – 1) = (2/3)*5
X – 1 = 10/3
Then we pass the one that is subtracting from the side of the x, to the other side and passes adding
X = 10/3 + 1
Remember that to add or subtract fractions they must have the same denominator or a common denominator (in this case we can write 1 as fraction 3/3). Then,
X = 10/3 + 3/3
X = 13/3
I hope I've been helpful!
Regards!
Answer:
0
Step-by-step explanation:
The formula gives you a relation between S and n. For every n, you can perform the calculation and obtain an S.
So, for n=0 we get 0/2 (0+1) which equals 0. So (0,0) is an (n,S) pair.
Answer:
P = 0.008908
Step-by-step explanation:
The complete question is:
The table below describes the smoking habits of a group of asthma sufferers
Nonsmokers Light Smoker Heavy smoker Total
Men 303 35 37 375
Women 413 31 45 489
Total 716 66 82 864
If two different people are randomly selected from the 864 subjects, find the probability that they are both heavy smokers.
The number of ways in which we can select x subjects from a group of n subject is given by the combination and it is calculated as:

Now, there are 82C2 ways to select subjects that are both heavy smokers. Because we are going to select 2 subjects from a group of 82 heavy smokers. So, it is calculated as:

At the same way, there are 864C2 ways to select 2 different people from the 864 subjects. It is equal to:

Then, the probability P that two different people from the 864 subjects are both heavy smokers is:

35.4% expressed as a decimal is .354
*Anchor: if you got 100% on your test, you got 1 whole test right.
Notice how I moved the decimal back two places to change 100% to 1
*An anchor is something that helps you remember what to do in the future. Use the anchor above to help you remember which way to move the decimal point when you change a percent to a decimal.