1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maks197457 [2]
3 years ago
6

A soft drink (mostly water) flows in a pipe at a beverage plant with a mass flow rate that would fill 220 cans, 0.355 - l each,

per minute. at point 2 in the pipe, the gauge pressure is 152 kpa and the cross-sectional area is 8.00 cm2. at point 1, 1.35m above point 2, the cross-sectional area is 2.00 cm2. find the gauge pressure at point 1 (in kpa).

Physics
2 answers:
diamong [38]3 years ago
7 0

The pressure of point 1 on a pipe is \fbox{\\120.9\,{\text{kPa}}} or \fbox{121\text{ kPa}} .

Further Explanation:

Bernoulli’s principle states that for a steady flow of fluids, sum of all the forms of energy along a stream is same for all points on the stream, i.e. the sum of kinetic, potential, and internal energy is same for all points on the stream.

Bernoulli’s equation can be stated as:

\fbox{\begin\\H=z+\dfrac{p}{{\rho g}}+\dfrac{{{v^2}}}{{2g}}\end{minispace}}

 

Here, H is the energy head or total head or constant, z is the height or elevation head, \dfrac{p}{{\rho g}} is the pressure head and \dfrac{{{v^2}}}{{2g}} is the dynamic head.

Given:

Density of water is 1000\text{ kg}/\text{m}^3.

The number of cans is 220.  

The flow rate of fluid through each can is 0.355\text{ l}/\text{min}.

The area of cross-section of point 1 is 2\,{\text{c}}{{\text{m}}^{\text{2}}}.

The height of pipe of point 1 is 1.35\,{\text{m}.

The area of cross-section of point 2 is 8{\text{ cm}}^{\text{2}}}.

The pressure of pipe of point 2 is 152\,{\text{kPa}}.

The point 2 is at the datum line. Therefore, the height of point is 0\,{\text{m}}.

Concept:

Total flow rate of fluid in pipe:

F=n\times{f}

Here, n is the number of cans, f is the flow of rate of fluid through each can, and F is the total flow rate of fluid.

Substitute 220 for n and 0.355\text{ l}/\text{min} for f.

\begin{aligned\\F&= 220 \times 0.355\text{ litre}/\text{min}\\&=78.1\text{ litre}/\text{min}\\&=1.3\text{ litre}/\text{sec}\\&=0.0013\text{ m}^3/\text{s}}\end{aligned}

The velocity of fluid at point 1:

{{\text{v}}_1} = \dfrac{F}{{{a_1}}}

Here, F is the total flow rate of fluid, {a_1} is the cross-section area of point 1 and {v_1} is the velocity of fluid at point 1.

Substitute 0.0013\text{ m}^3/\text{s} for F and 0.0002\,{{\text{m}}^{\text{2}}} for {a_1} in above expression.

\begin{aligned}{{\text{v}}_1}&=\frac{{0.0013\,{{{{\text{m}}^{\text{3}}}} \mathord{\left/{\vphantom{{{{\text{m}}^{\text{3}}}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}}}{{0.0002\,{{\text{m}}^{\text{2}}}}}\\&=6.5\,{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace}{\text{s}}}\\\end{aligned}

The velocity of fluid at point 2:

{{\text{v}}_2} = \dfrac{F}{{{a_2}}}

Here, {a_2} is the cross-section area of point 2 and {v_2} is the velocity of fluid of point 2.

Substitute 0.0008\,{{\text{m}}^{\text{2}}} for {a_2}

\begin{aligned}{{\text{v}}_2}=\frac{{0.0013\text{ m}^3/\text{s}}}{0.0008\,\text{m}^{2}}}\\=1.625\text{ m}/\text{s}\\\end{aligned}

Applying Bernoulli’s principle at point 1 and point 2:

\fbox{\begin\\{z_1}+\dfrac{{{p_1}}}{{\rho g}}+\dfrac{{v_1^2}}{{2g}}={z_2}+\dfrac{{{p_2}}}{{\rho g}}+\dfrac{{v_2^2}}{{2g}}\end{minispace}}

Rearrange the above equation for {p_{_1}}.

{p_1} = \rho g\left( {{z_2} - {z_1}} \right) + \dfrac{\rho }{2}\left( {v_2^2 - v_1^2} \right) + {p_2}

Here, \rho  is the water density, g is the acceleration due to gravity, {z_1} is the height of point 1, {z_2} is the height of point 2, {p_1} is the pressure of point 1 and {p_2} is the pressure of point 2.

Substitute all the values in above equation

\begin{aligned}p_1&=(1000\times{9.81}\times{(0-1.35)})+\dfrac{1000}{2}(1.625^2-6.5^2)+154000\\&=-13243.5+(-19804.68)+154000\\&=120951.82\text{ Pa}\\&\approx{121\text{ kPa}\end{aligned}

Thus, the pressure of point 1 on a pipe is  \fbox{\\120.9\,{\text{kPa}}} or \fbox{121\text{ kPa}} .

Learn more:

1.  Motion of a ball under gravity brainly.com/question/10934170

2.  A 700 kg car driving at 29m/s brainly.com/question/9484203

3. A 30kg box being pulled across a carpeted floor brainly.com/question/7031524

Answer Details:

Grade: College

Subject: Physics

Chapter: Fluid Mechanics

Keywords:

Bernoulli’s theorem, pipe, flow rate, pressure head, gauge pressure, point, fluid, height, 0.355 l/min, cross section area is 8.00 cm2 or 8.00 cm^2, and 1.35m above point 2.

Alona [7]3 years ago
3 0
Flow rate = 220*0.355 l/m = 78.1 l/min = 1.3 l/s = 0.0013 m^3/s

Point 2:
A2= 8 cm^2 = 0.0008 m^2
V2 = Flow rate/A2 = 0.0013/0.0008 = 1.625 m/s
P1 = 152 kPa = 152000 Pa

Point 1:
A1 = 2 cm^2 = 0.0002 m^2
V1 = Flow rate/A1 = 0.0013/0.0002 = 6.5 m/s
P1 = ?
Height = 1.35 m

Applying Bernoulli principle;
P2+1/2*V2^2/density = P1+1/2*V1^2/density +density*gravitational acceleration*height
=>152000+0.5*1.625^2*1000=P1+0.5*6.5^2*1000+1000*9.81*1.35
=> 153320.31 = P1 + 34368.5
=> P1 = 1533210.31-34368.5 = 118951.81 Pa = 118.95 kPa
You might be interested in
Which statements accurately describe Ernest Rutherford’s experiment? Check all that apply.
Dimas [21]

Answer:

Option (1), option (4) and option (5)

Explanation:

The main observations of Ernest Rutherford's experiment are given below:

1. most of the positively charged particles pass straight, it means there is an empty space in the atom.

2. Very few positively charged particles retraces their path.

So,

The positively charged particles were deflected because like charges repel, that means they are deflected by protons.

Almost all the positively charge concentrate in a very small part which is called nucleus.

7 0
4 years ago
How do we calculate the restoring force according to Hooke’s law?
timama [110]
Accordng to Hook's law
F=kx
So

A) spring constant × displacement
7 0
3 years ago
Read 2 more answers
Which of the following best illustrates a pair of sentences that are joined by an understood relationship?
zubka84 [21]

Answer : Option C) Detective Smiley scanned the dim hallway. He pulled his pistol from its holster.

Explanation : Amongst the given other choices there seems to be no relationship between two consecutive sentences. The only sentence which seemed to have a connection between previous and later sentence was option C. Where it is clearly stated that the detective named as Smiley was walking through the hallway which was dimly lit. The second sentence has a co-relation to the previous one as it extends the sentence. Detective smiley then pulled out his pistol from his holster after walking through the hallway.

This confirms that the correct answer for this question is Option C.

8 0
4 years ago
Read 2 more answers
6.3 Calculate the current that flows through the element of a heater when the potential difference is 250V and the resistance of
ryzh [129]

Answer:

16.66

Explanation:

3 0
3 years ago
15. The above figure shows the path of a ray of light falling on the mirror(s) represented by a box. Which of the following arra
lana [24]

Answer: A

Explanation:

From the figure given as attachments, the error pointing upward signifies the incident ray while the one point downwards signifies the reflected ray.

One of the laws of reflection is stated that the angle of incidence is equal to the angle of reflection.

Since the two arrows are parallel to each other, then the mirror must be perpendicular to the two arrows. That is, the incident ray and the reflected ray must be perpendicular to the mirror.

Option A is the correct answer.

5 0
3 years ago
Other questions:
  • surface is tipped to all principal planes of projection. Because it is not perpendicular to any projection plane, it cannot appe
    5·1 answer
  • La columna de aire en el interior de un clarinete fibra de tal manera que se forma ondas estacionarias con un nodo en un extremo
    12·1 answer
  • Suppose two comets, comet A and comet B, were orbiting the Sun, having the same average orbital radii. If comet A had a higher e
    5·1 answer
  • A simple pendulum consists of a 2 kg bob attached to a 1.5 m long string. How much time (in s) is required for this pendulum to
    5·1 answer
  • A ball is dropped from a height of 10 feet and bounces. Each bounce is 34 of the height of the bounce before. Thus, after the ba
    9·1 answer
  • What principle explains why lifting heavy objects is easier using ramps?
    13·2 answers
  • Half of the moon is always illuminated by the sun. Given that this is true, then what causes the moon to change phases throughou
    13·1 answer
  • A car's horn is honking at a constant frequency. as the car is driving away from you the pitch you hear will be ______ what is h
    7·1 answer
  • What is value of 2.37 in sl units
    14·1 answer
  • Find the direction of this vector.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!