<span>Answer:
No, because Einstein demonstrated that nothing can exceed the speed of light in a vacuum and for something to happen instantly over that distance would require that speed to be exceeded. If somehow the sun were to vanish, without explosive effects, an enormous gravity wave would begin travelling outward affecting the planets at the speed of light - thus taking about 8 minutes to reach earth.
But that is irrelevant because the only way to remove all that matter would be total conversion of the mass to energy and that energy would totally destroy everything - after the same 8 minutes.
Mike1942f · 9 years ago</span>
A)Ep'=mgh=mgl(1-cosa).At the bottom of the swing Ep=0(reference level),so the potential energy as the child is just released is bigger than the potential energy at the bottom of the swing.;B)The speed of the child at the bottom of the swing-->v=√(2gh)=√[2gl(1-cosa)];C)I don't think that the tension does any work.
Answer: 1896.55J/kg°C
Explanation:
The quantity of Heat Energy (Q) required to heat a material depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since,
Q = 1320 joules
Mass of material = 5.61kg
C = ? (let unknown value be Z)
Φ = 0.124°C
Then, Q = MCΦ
1320J = 5.61kg x Z x 0.124°C
1320J = 0.696kg°C x Z
Z = (1320J / 0.696kg°C)
Z = 1896.55 J/kg°C
Thus, the specific heat of the material is 1896.55J/kg°C
Answer: ![-\frac{1}{2}\times \frac{d[Br^.]}{dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cfrac%7Bd%5BBr%5E.%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
Explanation:
Rate of a reaction is defined as the rate of change of concentration per unit time.
Thus for reaction:

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
![Rate=-\frac{d[Br^.]}{2dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7Bd%5BBr%5E.%5D%7D%7B2dt%7D)
or ![Rate=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
Thus ![-\frac{d[Br^.]}{2dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BBr%5E.%5D%7D%7B2dt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
3260÷4=815 which is you average seed