1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anestetic [448]
4 years ago
7

Factor 1/4 out of -1/2x - 5/4y

Mathematics
1 answer:
MArishka [77]4 years ago
3 0
One solution was found :                   y = 1/13 = 0.077

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

                1/7*y-1/4-(-5/4*y-1/7)=0 

Step by step solution :Skip Ad
<span>Step  1  :</span> 1 Simplify — 7 <span>Equation at the end of step  1  :</span> 1 1 5 1 ((—•y)-—)-((0-(—•y))-—) = 0 7 4 4 7 <span>Step  2  :</span> 5 Simplify — 4 <span>Equation at the end of step  2  :</span> 1 1 5 1 ((—•y)-—)-((0-(—•y))-—) = 0 7 4 4 7 <span>Step  3  :</span>Calculating the Least Common Multiple :

<span> 3.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> 4 </span>

      The right denominator is :      <span> 7 </span>

<span><span>        Number of times each prime factor
        appears in the factorization of:</span><span><span><span> Prime 
 Factor </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span>2202</span><span>7011</span><span><span> Product of all 
 Prime Factors </span>4728</span></span></span>


      Least Common Multiple: 
      28 

Calculating Multipliers :

<span> 3.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 7

   Right_M = L.C.M / R_Deno = 4

Making Equivalent Fractions :

<span> 3.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respectiveMultiplier.

<span> L. Mult. • L. Num. -5y • 7 —————————————————— = ——————— L.C.M 28 R. Mult. • R. Num. 4 —————————————————— = —— L.C.M 28 </span>Adding fractions that have a common denominator :

<span> 3.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

-5y • 7 - (4) -35y - 4 ————————————— = ———————— 28 28 <span>Equation at the end of step  3  :</span> 1 1 (-35y - 4) ((— • y) - —) - —————————— = 0 7 4 28 <span>Step  4  :</span> 1 Simplify — 4 <span>Equation at the end of step  4  :</span> 1 1 (-35y - 4) ((— • y) - —) - —————————— = 0 7 4 28 <span>Step  5  :</span> 1 Simplify — 7 <span>Equation at the end of step  5  :</span> 1 1 (-35y - 4) ((— • y) - —) - —————————— = 0 7 4 28 <span>Step  6  :</span>Calculating the Least Common Multiple :

<span> 6.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> 7 </span>

      The right denominator is :      <span> 4 </span>

<span><span>        Number of times each prime factor
        appears in the factorization of:</span><span><span><span> Prime 
 Factor </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span>7101</span><span>2022</span><span><span> Product of all 
 Prime Factors </span>7428</span></span></span>


      Least Common Multiple: 
      28 

Calculating Multipliers :

<span> 6.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 4

   Right_M = L.C.M / R_Deno = 7

Making Equivalent Fractions :

<span> 6.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. y • 4 —————————————————— = ————— L.C.M 28 R. Mult. • R. Num. 7 —————————————————— = —— L.C.M 28 </span>Adding fractions that have a common denominator :

<span> 6.4 </span>      Adding up the two equivalent fractions 

y • 4 - (7) 4y - 7 ——————————— = —————— 28 28 <span>Equation at the end of step  6  :</span> (4y - 7) (-35y - 4) ———————— - —————————— = 0 28 28 <span>Step  7  :</span><span>Step  8  :</span>Pulling out like terms :

<span> 8.1 </span>    Pull out like factors :

   -35y - 4  =   -1 • (35y + 4) 

Adding fractions which have a common denominator :

<span> 8.2 </span>      Adding fractions which have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

(4y-7) - ((-35y-4)) 39y - 3 ——————————————————— = ——————— 28 28 <span>Step  9  :</span>Pulling out like terms :

<span> 9.1 </span>    Pull out like factors :

   39y - 3  =   3 • (13y - 1) 

<span>Equation at the end of step  9  :</span> 3 • (13y - 1) ————————————— = 0 28 <span>Step  10  :</span>When a fraction equals zero :<span><span> 10.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

3•(13y-1) ————————— • 28 = 0 • 28 28

Now, on the left hand side, the <span> 28 </span> cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   3  •  (13y-1)  = 0

Equations which are never true :

<span> 10.2 </span>     Solve :    3   =  0

<span>This equation has no solution.
</span>A a non-zero constant never equals zero.

Solving a Single Variable Equation :

<span> 10.3 </span>     Solve  :    13y-1 = 0<span> 

 </span>Add  1  to both sides of the equation :<span> 
 </span>                     13y = 1 
Divide both sides of the equation by 13:
                     y = 1/13 = 0.077 

One solution was found :                  <span> y = 1/13 = 0.077</span>
You might be interested in
Gaudvile atsakyk sita
lawyer [7]

Answer:

Huh?

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
If p is inversely proportional to the square of q, and p is 22 when q is 8, determine p when q is equal to 2. 9 w​
Amiraneli [1.4K]

Answer:

167.42

Step-by-step explanation:

p = 1/q²

22 = k* 1/8² .........k is the constant which we re finding now

k = 1408

p = 1408/2.9²

= 167.42

7 0
3 years ago
Solve attachment EASY
ANTONII [103]

Answer:

x=\frac{-3d-9}{k-d}

Step-by-step explanation:

Step 1: Write out equation

d(-3 + x) = kx + 9

Step 2: Distribute

-3d + dx = kx + 9

Step 3: Subtract dx on both sides

-3d = kx - dx + 9

Step 4: Subtract 9 on both sides

-3d - 9 = kx - dx

Step 5: Factor

-3d - 9 = x(k - d)

Step 6: Divide both sides by k - d

x=\frac{-3d-9}{k-d}

6 0
3 years ago
What's the answer and how to work it
nasty-shy [4]
Obtuse. that's correct
because triangle MNP has m<M = 35 and m<P = 47
the other angel m<N should be : 
m<N = 180 - (m<M + m<P)
m<N = 180 - (35 +47)
m<N = 180 - 82
m<N = 98

m<N = 98 is an obtuse angel which is greater than 90

<span>An </span>obtuse triangle<span> is a </span>triangle<span> in which one of the angles is an </span>obtuse<span> angle.
</span>
Answer: triangle MNP is an obtuse triangle 

<span />
6 0
3 years ago
Use the photo at the bottom:
satela [25.4K]

Answer:

<2 = 129°

Step-by-step explanation:

if I || m then 5x+12 =m<2 and m<2 + 2x + 14 = 180°

2x + 14 + 5x + 12 = 7x + 26 =180°

7x = 154 ➡x = 21°

m <2 = 5×21 + 14

8 0
3 years ago
Other questions:
  • This question is hard for me to answer can you help me. The question is find the value of x.
    13·1 answer
  • chet needs to buy 4 work shirts,all costing the same amount .the total cost before chet appplies a $25 gift certificate can be n
    13·1 answer
  • What is the vertex of the quadratic function?
    5·1 answer
  • What is 32.330 + 23.559
    12·1 answer
  • The slope of the graph of y = x is = -------------.
    7·1 answer
  • The monthly utility bills in a city are normally distributed, with a mean of $100 and a standard deviation of $10. If 300 utilit
    5·1 answer
  • 18 landmarks in 12 3/4 days how many days to do 12 landmarks?
    7·1 answer
  • Put the equation 2x+3y=1470 in function notation
    5·1 answer
  • ANSWER ASAP!!! A trash compactor can compress 2/3 kilograms of trash in 1 minute. How many minutes would it take to compress 1/4
    12·1 answer
  • The students at Southern Junior High School are divided into four homerooms. Benjamin just moved into the school district and wi
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!