1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nimfa-mama [501]
3 years ago
10

What is the domain of the function y= square root of x+6-7?

Mathematics
1 answer:
Rashid [163]3 years ago
8 0
Domain of y = sqrt(x + 6) - 7 <br><br>
Finding domain is trying to check the following valid conditions <br>
<br>
condition 1: check for x such that the value in square root must greater or equal to 0 <br>(applicable here) <br>x + 6 >= 0<br>x > -6  ... this is the answer<br><br>
condition 2: check for x such that the divisor must not be zero <br>(not applicable here)   <br><br>
condition 3(misc) : check some functions <br>for example ... log(0) is invalid...<br>
You might be interested in
Does anyone know this ? i'm stuck.. i'll give you brainliest and 15 points !! pls show work.
insens350 [35]

Answer:

2y+3 is parallel or the same as QR and PS

5 0
3 years ago
Geometry help please!
Gekata [30.6K]

given the following sets.

A = {0, 1, 2, 3}
B = {a, b, c, d}
C = {0, a, 2, b}

Find B  C.

3 0
3 years ago
PLEASE HELP ASAP!!!!
Setler [38]

Piecewise Function is like multiple functions with a speific/given domain in one set, or three in one for easier understanding, perhaps.

To evaluate the function, we have to check which value to evalue and which domain is fit or perfect for the three functions.

Since we want to evaluate x = -8 and x = 4. That means x^2 cannot be used because the given domain is less than -8 and 4. For the cube root of x, the domain is given from -8 to 1. That meand we can substitute x = -8 in the cube root function because the cube root contains -8 in domain but can't substitute x = 4 in since it doesn't contain 4 in domain.

Last is the constant function where x ≥ 1. We can substitute x = 4 because it is contained in domain.

Therefore:

\large{  \begin{cases} f( - 8 ) =   \sqrt[3]{ - 8}  \\ f(4) = 3 \end{cases}}

The nth root of a can contain negative number only if n is an odd number.

\large{  \begin{cases} f( - 8 ) =   \sqrt[3]{ - 2 \times -  2 \times   - 2}  \\ f(4) = 3 \end{cases}} \\  \large{  \begin{cases} f( - 8 ) =  - 2\\ f(4) = 3 \end{cases}}

Answer

  • f(-8) = -2
  • f(4) = 3
6 0
2 years ago
Help I cannot figure this question out.
netineya [11]

Answer:

B. x = -1 ± i

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Standard Form: ax² + bx + c = 0
  • Factoring
  • Quadratic Formula: \displaystyle x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}

<u>Algebra II</u>

  • Imaginary Numbers: √-1 = i

Step-by-step explanation:

<u>Step 1: Define</u>

x² + 2x = -2

<u>Step 2: Identify Variables</u>

  1. Rewrite Quadratic in Standard Form [Addition Property of Equality]:        x² + 2x + 2 = 0
  2. Break up Quadratic:                                                                                        a = 1, b = 2, c = 2

<u>Step 3: Solve for </u><em><u>x</u></em>

  1. Substitute in variables [Quadratic Formula]:                                                \displaystyle x=\frac{-2 \pm \sqrt{2^2-4(1)(2)}}{2(1)}
  2. [√Radical] Evaluate exponents:                                                                     \displaystyle x=\frac{-2 \pm \sqrt{4-4(1)(2)}}{2(1)}
  3. Multiply:                                                                                                           \displaystyle x=\frac{-2 \pm \sqrt{4-8}}{2}
  4. [√Radical] Subtract:                                                                                        \displaystyle x=\frac{-2 \pm \sqrt{-4}}{2}
  5. [√Radical] Factor:                                                                                        \displaystyle x=\frac{-2 \pm \sqrt{-1}\sqrt{4}}{2}
  6. [√Radicals] Simplify:                                                                                       \displaystyle x=\frac{-2 \pm 2i}{2}
  7. Factor:                                                                                                             \displaystyle x=\frac{2(-1 \pm i)}{2}
  8. Divide:                                                                                                             \displaystyle x = -1 \pm i
3 0
3 years ago
Help me out with the answer!!!!!!
Pie

Answer:

Adjacent

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • What is the volume of the square pyramid shown below?
    5·2 answers
  • Evaluate ∫ x cos 3x dx. A. 1/3 x sin 3x + 1/9 cos 3x + C B. 1/3 x sin 3x - 1/3 sin 3x + C C. 1/2 x2 + 1/18 sin2 3x + C D. 1/6 x2
    7·1 answer
  • The number 1.3,1/1/3,1.34 in least to greatest
    9·1 answer
  • Find each product or quotient. Express your answer in exponential form.<br> (-x^5y^7)/y^3
    5·1 answer
  • tom is 57 years old. Tom has a son ,james. In 3 years tom will be twice as old as james. How old is james
    8·2 answers
  • Which fraction is equivalent to 15/30<br> A 3/4<br> B 2/4<br> C 3/5<br> D 5/6
    15·2 answers
  • What is the slope of your equation?
    6·1 answer
  • 7 times a certain number is decreased by 8 and the result is equals to 20​
    7·2 answers
  • James and Martina each read
    12·2 answers
  • Can you help A B C Or D image is here
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!