Answer:
(A) There should have been 5 outcomes of HT
(B) The experimental probability is greater than the theoretical probability of HT.
Step-by-step explanation:
Given
-- Sample Space
--- Sample Size
Solving (a); theoretical outcome of HT in 20 tosses
First, calculate the theoretical probability of HT


Multiply this by the number of tosses


<em></em>
Solving (b); experimental probability of HT
Here, we make use of the table


---- Experimental Probability
In (a), the theoretical probability is:

---- Experimental Probability
By comparison;

Answer:
The probability that a randomly chosen Ford truck runs out of gas before it has gone 325 miles is 0.0062.
Step-by-step explanation:
Let <em>X</em> = the number of miles Ford trucks can go on one tank of gas.
The random variable <em>X</em> is normally distributed with mean, <em>μ</em> = 350 miles and standard deviation, <em>σ</em> = 10 miles.
If the Ford truck runs out of gas before it has gone 325 miles it implies that the truck has traveled less than 325 miles.
Compute the value of P (X < 325) as follows:

Thus, the probability that a randomly chosen Ford truck runs out of gas before it has gone 325 miles is 0.0062.
Answer:
Volume= 540 ft^3
Step-by-step explanation:
Since volume= length times Width times height, you do 3 times 6 times 30= 540 ft^cubed.
Answer:
Step-by-step explanation:
Direct variation problems can easily be solved with proportions, namely:
and cross multiply to get
2y = 20 so
y = 10