Considering that the grows at a constant rate we can form an equation where x = how many years after it was planted
and y = its height
Now we just need to find how many feet it grows each year. To do that we just need to compare its height from a certain age to another:
6 years after it was planted : 7 feet,
so x=6 and y = 7
9 years after it was planted: 16 feet
so x= 9 y=16
With thay we can conclude that in 3 years , the tree grew 9 feet. To discover how much the tree grow each year we just nee to divide 9 feet by 3 years which is 3 feet every year.
To write the equatopn now we just need to find the y-intercept which we can discover by setting x to 0:
If in 6 years after the tree was planted it is 7 feet long , we can discover how long it was when it was planted by subtracting 6 years of growth (The slope ) which is 3
7 - 6(years)×3(feet the tree grow each year)
7 - 18 = -11
The tree was -11 feet long when it was planted
which is our y-intercept
( I know it doesnt make sense , but if you apply to a graph it will make more sense )
Now we can make the equation
y = 3x -11
Correct answer is: (0,7843) and (10,8793)
Solution:-
Given that a junior college has an enrollment of 7843 students in 1990 and 8793 students in year 2000.
We have to write this data as (x,y) .
Where x= years after 1990 and y=number of students enrolled.
Since in 1990, 7843 students enrolled, x = 1990-1990=0
And y=7843.
Hence one ordered pair is (0,7843).
Let us find the years after 1990 for 2000 = 2000-1990 =10
Hence another ordered pair is (10,8793).
So you do 20%*426 to get 85.2 then you would subtract 85.2 from 426 because they sold 20% more than last year. On top of that the answer isn't 355 it is 340.8.
Answer:
1
Step-by-step explanation:
We can use the slope formula
m = (y2-y1)/(x2-x1)
= (5-8)/(-8 - -5)
= -3/(-8+5)
= -3/-3
= 1