Answer:
Z and B are independent events because P(Z∣B) = P(Z).
Step-by-step explanation:
After a small online search, I've found a table to complete this problem, that we can see below.
For two events Z and B, we have:
P(Z|B) = probability of Z given that B
such that:
P(Z|B) = P(Z∩B)/P(B)
So, two events are independent if the outcome of one does not affect the outcome of the other.
So, if the probability of Z given B is different than P(Z) (the probability of event Z) means that the events are not independent.
So Z and B are independent if the probability of Z given B is equal to the probability of Z.
P(Z|B) = P(Z)
In the table we can see:
P(Z|B) will be equal to the quotient between all the cases of Z given B (126) and the total cases are given B (280)
P(Z|B) = 126/280 = 0.45
Similarly, we can find P(Z):
And P(Z) = 297/660 = 0.45
So we can see that:
P(Z|B) = P(Z)
Thus, B and Z are independent.
Answer:
Cos y = t / 8
Step-by-step explanation:
Using the hints given in the question, the omitted tribagke will look like the triangle attached on the picture ;
From trigonometry :
Sin y = opposite / hypotenus
Sin y = s / 8
Opposite side = s ; hypotenus = 8
Tan y = opposite / Adjacent
Tan y = s / t
Adjacent side = t
Then ;
Cos y = Adjacent / hypotenus
Hence,
Cos y = t / 8
Answer:

Step-by-step explanation:

Answer:
A
Step-by-step explanation:
Using the sine ratio in the right triangle
sin40° =
=
= 
Multiply both sides by 7, thus
AC = 7sin40° → A
R(t) = 4t
A(r) = π(r^2)
a) A(t) = A[r(t)] = π[r(t)]^2 = π[4t]^2 = 16π(t^2)
b) t = 4,
A(4) = 16*3.14*(16)^2 = 12,861.44