I would help but am I gonna
<h3><u><em>My friends the answer is:</em></u></h3><h3><u><em>If 1 lunch =$2.50
</em></u></h3><h3><u><em>
2 lunches = $5.00 (2.50x2)
</em></u></h3><h3><u><em>
3 lunches =$7.50
</em></u></h3><h3><u><em>
4 lunches =$10.00
</em></u></h3><h3><u><em>
5 lunches= $12.50
</em></u></h3><h3><u><em>
Just add $2.50</em></u></h3>
Answer:
36
Step-by-step explanation:
10% of 360=10/100*360=1/10*360=360/10=36
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 