If you mean what goes in the blanks, it is 5 for the first empty box and 10 for the second empty box.
Answer:
Step-by-step explanation:
Answer: The correct statements are
The GCF of the coefficients is correct.
The variable c is not common to all terms, so a power of c should not have been factored out.
David applied the distributive property.
Step-by-step explanation:
GCF = Greatest common factor
1) GCF of coefficients : (80,32,48)
80 = 2 × 2 × 2 × 2 × 5
32 = 2 × 2 × 2 × 2 × 2
48 = 2 × 2 × 2 × 2 × 3
GCF of coefficients : (80,32,48) is 16.
2) GCF of variables :(
)
= b × b × b × b
= b × b
=b × b × b × b
GCF of variables :(
) is 
3) GCF of
and c: c is not the GCF of the polynomial. The variable c is not common to all terms, so a power of c should not have been factored out.
4) 
David applied the distributive property.
Answer:
225
Step-by-step explanation:
Because of 45 time 5
Answer:
Th computed value of the test statistic is 3.597
Step-by-step explanation:
The null and the alternative hypothesis is as follows:
Null Hypothesis:
the population correlation coefficient is equal to zero
the population correlation coefficient is not equal to zero
The test statistics for Pearson correlation coefficient is thus computed as :

where;
r = correlation coefficient = 0.60
n = sample size = 25
So;



t = 3.597
Comparing to a critical value of t (23 degrees of freedom two-tailed value) = 2.069
Decision Rule:
Since computed value of t is greater than the critical value of t; We reject the null hypothesis and accept the alternative hypothesis.
Conclusion:
We conclude that the population correlation coefficient significantly differs from 0 at 5% (0.05) level of significance.