1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
murzikaleks [220]
3 years ago
6

it is 1:00 hunter is waiting for ben. ben said he would meet hunter in 25 minutes but he arrived 5 minutes late. what time does

he meet hunter?
Mathematics
2 answers:
r-ruslan [8.4K]3 years ago
7 0
1:00+25=1:25+5=1:30
   So the answer is 1:30.
     hope this helps!!
kaheart [24]3 years ago
3 0
1:30 Because 25 is the minutes you have now. But Ben meets the hunter 5 minutes late. 25 plus 5 equals 30. 
You might be interested in
Please Help<br><br> 2x^-3 = ?
Nesterboy [21]
2x^-3= 2/x^3
you can't multiple 2x to the power of -3 because is not correct. so you need to change the equation for it to give you an answer
4 0
3 years ago
Read 2 more answers
What is the product ?<br> (4y-3)(2y^2+3y-5)
yuradex [85]

Answer:

8y^3 + 6y^2 - 29y + 15

Step-by-step explanation:

8y^3 + 12y^2 - 20y - 6y^2 - 9y + 15

then

8y^3 + 6y^2 - 29y + 15 is the product

Best regards

4 0
3 years ago
Read 2 more answers
Liza needs a total of 22.23 square feet of cloth to make a bag and a towel the bag requires 5.13 square feet of cloth the height
Troyanec [42]

Answer:

5.7 feet

Step-by-step explanation:

Total cloth area recquired to make a bag and a towel is 22.23 square feet

Given the area of the cloth recquired to make the bag is 5.13 square feet.

The area of cloth recquired to make the towel is = 22.23-5.13=17.1 square feet

given the height of the towel = 3 feet

let the length of the towel be x

We know that area = length\times height

area=3x

3x=17.1\\x=5.7

therefore the length of the towel is 5.7 feet

6 0
2 years ago
it took Bob 55 minutes to clean the garbage. How many seconds did it take bob?there are 60 seconds in one minute please help me
defon

Answer:

3,300 sec

Step-by-step explanation:

7 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Other questions:
  • Simplify each square root:
    7·1 answer
  • A bike racer covers a distance of 220 kilometers in 4 hours. What is the rate x of the bicyclist in kilometers per hour?
    14·2 answers
  • The correct order for saving should be _____.
    8·1 answer
  • A sea lion dove from the water's surface at sea level to an altitude of −216.12 meters in 2.4 minutes. What is the average chang
    10·1 answer
  • Which graph best represents the equation 2X + 2Y=4
    13·1 answer
  • *6. Five brothers each bought two hot dogs &amp; a bag of chips. If the chips
    6·2 answers
  • How much fencing would need to enclose a circular pond with diameter 12.5 feet
    7·1 answer
  • Plz solve will give brainliest
    11·1 answer
  • What is the product? [4 2] x
    13·1 answer
  • Please help me im strugeling
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!