For the given function h(x), we have:
a) at x = -2 and x = 2.
b) y = 0 and y = 3.
<h3>
How to identify the maximums of function h(x)?</h3>
First, we want to get the values of x at which we have maximums. To do that, we need to see the value in the horizontal axis at where we have maximums.
By looking at the horizontal axis, we can see that the maximums are at:
x = -2 and at x = 2.
Now we want to get the maximum values, to do that, we need to look at the values in the vertical axis.
- The first maximum value is at y = 0 (the one for x = -2)
- The second maximum is at y = 3 (the one for x = 2).
If you want to learn more about maximums:
brainly.com/question/1938915
#SPJ1
<h2>
Answer</h2>
After the dilation
around the center of dilation (2, -2), our triangle will have coordinates:



<h2>Explanation</h2>
First, we are going to translate the center of dilation to the origin. Since the center of dilation is (2, -2) we need to move two units to the left (-2) and two units up (2) to get to the origin. Therefore, our first partial rule will be:
→
Next, we are going to perform our dilation, so we are going to multiply our resulting point by the dilation factor
. Therefore our second partial rule will be:
→
→
Now, the only thing left to create our actual rule is going back from the origin to the original center of dilation, so we need to move two units to the right (2) and two units down (-2)
→
→
Now that we have our rule, we just need to apply it to each point of our triangle to perform the required dilation:













Now we can finally draw our triangle:
Angles 1 and 3 are supplementary
Really,

Simple Calculator Calculation
-1 is your answer, if that is what you want...