Let the difference between consecutive terms be D. If the middle term is 30, then the term before it is 30-D, and the term after it is 30+D. So the sum of these three terms would be (30-D) + 30 + (30+D) = 3*30.
Extending this sum to include all 11 terms centered around 30, we see that any addition of D is canceled by a balanced subtraction, leaving you with 11 copies of 30. So the value of the sum is 11*30 = 330.
Answer:
P(N)=0.3
Step-by-step explanation:
Given: P(M)= 0.46, P(M and N)=0.138
Using P(M) ×P(N)= P(M and N)
⇒0.46×P(N)= 0.138
⇒P(N)= 
⇒P(N)=0.3
<em>so</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>1</em><em>5</em><em>3</em><em>.</em><em>9</em><em> </em><em>c</em><em>m</em><em> </em><em>^</em><em>2</em><em> </em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>⤴</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em><em>.</em>
Answer: We have
f'(x) = a x + b,
f'(x) = 0 at x = -b/a
f(x) = a x^2 / 2 + b x + c
Meaning of marked part
❟ ∵ a<0 ❟ f is a quadratic function
∴ f has absolute maximum value at x = -b/a
For all a with a less than zero, f is a quadratic function. Therefore f has a global maximum at x = -b/a
That typesetting seems very sloppy. It probably is supposed to be
∀a < 0, f is a quadratic function.
The second sentence is sloppy in use of "absolute". It can't mean absolute value, so presumably it means "global".
Sometimes a minimum or maximum is only local, but a quadratic function has exactly one extrema, and it is global. And if a < 0, the extrema is a global maximum.
Step-by-step explanation:
An extrema (minimum or maximum) for f(x) occurs only where f'(x) = 0, that is, when the slope of the tangent at x is zero.
But if the function crosses its tangent at that point, the point is an inflection point, not an extrema. A quadratic never crosses it's tangent.