1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
barxatty [35]
4 years ago
8

What is 32 rounded to the nearest hundred?

Mathematics
1 answer:
dezoksy [38]4 years ago
8 0
32 rounded to the nearest hundred would be 0
You might be interested in
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
3 years ago
Calcula la altura de un cono se 235.62cm³ de volumen si el radio de la base mide 5cm​
Ber [7]

Answer:

Datos: r= 24cm. g= 74 cm. ...

- La altura h.

- La generatriz.

- el radio. Que entre ellos forman un triangulo rectángulo siendo la generatriz la hipotenusa y el radio la base, entonces: ...

g²=r²+h² despejando la altura h se tiene que:

h=√g²-r² h= √ (74cm)² - (24 cm)²

es. un paso para que. puedas resolver

6 0
3 years ago
Order from least to greatest 14%, 1/5, 0.03
kondor19780726 [428]

Answer:

ight its pretty self explanitory its B.

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
The volume of the cylinder is 5275 ft and the height is 23 find the diameter please explain this is for school tomorrow
stepan [7]

\bf \textit{volume of a cylinder}\\\\ V=\pi r^2 h~~ \begin{cases} r=radius\\ h=height\\ \cline{1-1} V=5275\\ h=23 \end{cases}\implies 5275=\pi r^2(23)\implies \cfrac{5275}{23\pi }=r^2 \\\\\\ \sqrt{\cfrac{5275}{23\pi }}=r\implies 15.144\approx r~\hspace{10em}\stackrel{diameter=2r}{d\approx 30.288}

4 0
3 years ago
Solve for x: -8 &lt; 3x +1 &lt; 13
Goshia [24]

\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{-8 < 3x+1 < 13 }} \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{-8+-1 < 3x+1+-1 < 13+-1 \ (Add \ -1 \ to \ all \ parts) }} \end{gathered}$}

\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{\frac{-9}{3} < \frac{3x}{3} < \frac{12}{3} \ (Divide \ all \ parts \ by \ 3)    }} \end{gathered}$}

\red{\boxed{\large\displaystyle\text{$\begin{gathered}\sf \boldsymbol{\sf{-3 < x < 4 }} \end{gathered}$} }}

3 0
2 years ago
Other questions:
  • How do you show work for this question?
    10·1 answer
  • 25 points need this answered ASAP: You have two exponential functions. One function has the formula g») = 3(2x). The other funct
    8·1 answer
  • Which expression is equivalent to this one?
    12·1 answer
  • Leon scored 20 points in yesterday's
    10·1 answer
  • Two quantites, x and y, are directly proportional. if x is halved, what happened to y?
    9·2 answers
  • Convert 3pi/2 to degrees.
    13·1 answer
  • 10
    6·1 answer
  • Help please I will give brainiest​
    14·2 answers
  • PLEASE HELP! 10 POINTS.
    6·2 answers
  • Two hunters are out in the woods when one of them collapses. He’s not breathing and his eyes are glazed. The other guy whips out
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!