Answer:
3, Matter cannot be created or destroyed, only transformed
After two half-lives or 60 years, 7.5 g of the element will be left.
<u>Explanation:</u>
<u>Half-life:</u>
- In simple words, Half-life can be defined as the amount of time needed for a quantity to fall to half its value as contained at the beginning of the time period.
- In this problem the half-life of the element is thirty years, then after thirty years half of the sample would have decayed and half would be left as it is.
- After thirty years (The first half-life ) 30 /2 = 15 g declines and 15 g remains disappeared.
- And after another sixty years (The two half-lives) 15 /2 = 7.5 g declines and 7.5 g remains disappeared.
- After two half-lives or 60 years, 7.5 g of the element will be left.
Answer:
Mutualistic means that both organisms benefit.
Explanation:
The acacia tree provides shelter and food to the ants, while the ants protect the tree from other animals.
Answer:
B- environmental factors do most of the “selecting.”
Explanation:
Natural selection is the environment that the organism lives in, and the process which that organism changes by.
Artificial selection is when humans intervene and create an organism that isn't suited for their specific environment, but rather for the humans own liking.
Think of breeding dogs to be smaller, or more fluffy and adorable. These are not traits to help them survive in where they original environment was.
Answer:
The correct answer is 3: "<em>High levels of Ca2+ are expected to be found </em><em>within the sarcoplasmic reticulum</em>".
Explanation:
Muscular contraction is a highly regulated process that depends on free calcium concentration in the cytoplasm. Amounts of cytoplasmic calcium are regulated by <u>sarcoplasmic reticulum</u> that functions as a storage of the ion.
When a nerve impulse reaches the membrane of a muscle fiber, through acetylcholine release, the membrane depolarizes producing the entrance of calcium from <u>extracellular space</u>. The impulse is transmitted along the membrane to the sarcoplasmic reticulum, from where calcium is released. At this point, <em>tropomyosin is obstructing binding sites for myosin on the thin filament</em>. The calcium channel in the sarcoplasmic reticulum controls the ion release, that activates and regulates muscle contraction, by increasing its cytoplasmic levels. When <em>calcium binds to the troponin C</em>, <em>the troponin T alters the tropomyosin by moving it and then unblocks the binding sites,</em> making possible the formation of <em>cross-bridges between actin and myosin filaments.</em> When myosin binds to the uncovered actin-binding sites, ATP is transformed into ADP and inorganic phosphate.
Z-bands are then pulled toward each other, thus shortening the sarcomere and the I-band, and producing muscle fiber contraction.