Answer:
The height of the tree is three (3) deep
Explanation:
It's 3 deep
Under 129, comes 125 and 685;
Under 125, comes 52 : Under 685, comes 511;
Under 52, comes 46 : Under 511, is 601.
This is illustrated below.
129
∧
125,685
|,|
52,511
|,|
46,601
Answer:
- <em>Abbie’s acceleration is (1/2) Zak’s acceleration.</em>
Explanation
1. <u>Data</u>:
a) ω = constant
b) Abbie: r₁ = 1 m
c) Zak: r₂ = 2 m
d) Ac₁ = ? Ac₂
2. <u>Formulae</u>
3. <u>Solution</u>:
a) Abbie:
b) Zack:
c) Divide Ac₁ / Ac₂
- Ac₁ / Ac₂ = ω² (1m) / [ω² (2m) ] = 1/2
⇒ Ac₁ = (1/2) Ac₂ = Ac₂ / 2 = 0.5 Ac₂
Answer:
<em>7.45 10^5N.</em>
Explanation:
according to newtons second law of motion;

Fapp is the applied force
Fr is the resistive force
m is the mass of the luxury
a is the acceleration
Since the huge luxury liner move with constant velocity, then acceleration is zero i.e a = 0. The equation becomes;

This shows that the applied force will be equal to the resistive force if the velocity is constant.
Given Fr = 7.45 10^5 N therefore the resistive force will also be 7.45 10^5N.
<em>Hence the magnitude of the resistive force exerted by the water on the cruise ship is 7.45 10^5N.</em>
Answer:
Option B (remain vertically under the plane) is the correct option.
Explanation:
- A flare would follow a particle trajectory with horizontal direction somewhat like airplane velocity as well as initial maximum motion as null but instead, gravity will induce acceleration. It would be lowered vertically underneath the plane before flare had already sunk to something like the surface.
- There is no different movement in the airplane nor even the flash. And none of them can change its horizontal level.
Some other alternatives are given really aren't linked to the specified scenario. So choice B is the perfect solution to that.