<h2>
The magnitude 24 (
) of the acceleration of the particle when the particle is not moving.</h2>
Explanation:
Given,
A particle moving along the x-axis has a position given by
m ........ (1)
To find, the magnitude (
) of the acceleration of the particle when the particle is not moving = ?
Differentiating equation (1) w.r.t, 't', we get

⇒
....... (2)
⇒ 
⇒ 
⇒ t = 2 s
Again, differentiating equation (2) w.r.t, 't', we get

Put t = 2, we get

Thus, the magnitude 24 (
) of the acceleration of the particle when the particle is not moving.
Here, we are required to determine how fast is you drink, sitting in the cup holder, travelling relative to the car.
- The speed of the drink, sitting in the cup holder, relative to the car is; 0m/s
From the laws of relative motion,
- <em>when object A and Object B are travelling with speed a and b respectively in the same direction, the speed of Object A relative to B is;. (a - b)</em>
- <em>when object A and Object B are travelling with speed a and b respectively in the same direction, the speed of Object A relative to B is;. (a - b)when object A and Object B are travelling with speed a and b respectively in opposite directions, the speed of Object A relative to B is; (a+b)</em>
- <em>when object A and Object B are travelling with speed a and b respectively in the same direction, the speed of Object A relative to B is;. (a - b)when object A and Object B are travelling with speed a and b respectively in opposite directions, the speed of Object A relative to B is; (a+b)when object A and Object B are travelling with speed a and b respectively in the same direction, where speed a = speed b, then the speed of object A relative to object B is; zero(0).</em>
Evidently, the scenario in the question is similar to the third scenario above. The cup, sitting in the cup holder is travelling with the car at the same constant speed 10m/s.
Therefore, the speed of the drink relative to the car is zero(0).
Read more:
brainly.com/question/20549055
What well u can use to make a shelter but that's all I can think of ??
Hi there!
In this instance, the object spinning in a horizontal circle will experience a net force in the horizontal direction due to tension.
The net force is equivalent to the centripetal force, so:
∑F = T
mv²/r = T
Solve for v:
v = √rT/m
v = 13.96 m/s