Answer:
The half life for radioactive can be calculated as:
N /N0 = (1 /2) ^ n
n = T /T half
According to question there are n number of half life are present which would result in remaining amount of element as n.
Explanation:
Sorry if wrong
Answer:
6.217 pounds
Explanation:
We are given;
- Density of body fats 0.94 g/mL
- Volume of fats removed = 3.0 L
We are required to determine the mass of fats removed in pounds.
We need to know that;
Density = Mass ÷ volume
1 L = 1000 mL, thus, volume is 3000 mL
Rearranging the formula;
Mass = Density × Volume
= 0.94 g/mL × 3000 mL
= 2,820 g
but, 1 pound = 453.592 g
Therefore;
Mass = 2,820 g ÷ 453.592 g per pound
= 6.217 pounds
Thus, the amount of fats removed is 6.217 pounds
It expresses a cube using cm
Using the Henderson-Hasselbalch equation on the solution before HCl addition: pH = pKa + log([A-]/[HA]) 8.0 = 7.4 + log([A-]/[HA]); [A-]/[HA] = 4.0. (equation 1) Also, 0.1 L * 1.0 mol/L = 0.1 moles total of the compound. Therefore, [A-] + [HA] = 0.1 (equation 2) Solving the simultaneous equations 1 and 2 gives: A- = 0.08 moles AH = 0.02 moles Adding strong acid reduces A- and increases AH by the same amount. 0.03 L * 1 mol/L = 0.03 moles HCl will be added, soA- = 0.08 - 0.03 = 0.05 moles AH = 0.02 + 0.03 = 0.05 moles Therefore, after HCl addition, [A-]/[HA] = 0.05 / 0.05 = 1.0 Resubstituting into the Henderson-Hasselbalch equation: pH = 7.4 + log(1.0) = 7.4, the final pH.