Answer:
The second experiment (reversible path) does more work
Explanation:
Step 1:
A piston confines 0.200 mol Ne(g) in 1.20L at 25 degree °C
<em>(a) The gas is allowed to expand through an additional 1.20 L against a constant of 1.00atm</em>
<em></em>
Irreversible path: w =-Pex*ΔV
⇒ with Pex = 1.00 atm
⇒ with ΔV = 1.20 L
W = -(1.00 atm) * 1.20 L
W = -1.20L*atm *101.325 J /1 L*atm = -121.59 J
<em>(b) The gas is allowed to expand reversibly and isothermally to the same final volume.</em>
<em></em>
W = -nRTln(Vfinal/Vinitial)
⇒ with n = the number of moles = 0.200
⇒ with R = gas constant = 8.3145 J/K*mol
⇒ with T = 298 Kelvin
⇒ with Vfinal/Vinitial = 2.40/1.20 = 2
W = -(0.200mol) * 8.3145 J/K*mol *298K *ln(2.4/1.2)
W = -343.5 J
The second experiment (reversible path) does more work
Answer:The green growing on the penny of copper and the rust forming on the nail of iron are chemical changes. Boiling away salt water, scraping iron filings from a mixture of sand with a magnet, and breaking a rock with a hammer, are physical changes.
Explanation:
Answer:
1.22 x 10²⁵ molecules CO₂
Explanation:
To find the amount of molecules, you need to multiply the number of moles by Avogadro's Number. Avogadro's Number is a ratio which represents the amount of molecules per every 1 mole. It is important to arrange this ratio in a way that allows for the cancellation of units (since you are going from moles to molecules, moles should be in the denominator). The final answer should have 3 sig figs like the given value.
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
20.2 moles CO₂ 6.022 x 10²³ molecules
--------------------------- x -------------------------------------- = 1.22 x 10²⁵ molecules
1 mole
Explanation:
According to the analysis, Molarity is amount mole per volume(1L). the amount in mole would be molarity × volume in litres.
0.500M × (250/1000)L= 0.125moles.
I hope this helps**