Check the picture below.
you can pretty much just count off the grid the units for JK and MI.
now, let's check how long are KI and JM
![\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) K&({{ -4}}\quad ,&{{ 4}})\quad % (c,d) I&({{ -2}}\quad ,&{{ 3}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ KI=\sqrt{[-2-(-4)]^2+[3-4]^2}\implies KI=\sqrt{(-2+4)^2+(3-4)^2} \\\\\\ KI=\sqrt{2^2+(-1)^2}\implies KI=\sqrt{4+1}\implies \boxed{KI=\sqrt{5}}\\\\ -------------------------------](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0AK%26%28%7B%7B%20-4%7D%7D%5Cquad%20%2C%26%7B%7B%204%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%29%0AI%26%28%7B%7B%20-2%7D%7D%5Cquad%20%2C%26%7B%7B%203%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AKI%3D%5Csqrt%7B%5B-2-%28-4%29%5D%5E2%2B%5B3-4%5D%5E2%7D%5Cimplies%20KI%3D%5Csqrt%7B%28-2%2B4%29%5E2%2B%283-4%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AKI%3D%5Csqrt%7B2%5E2%2B%28-1%29%5E2%7D%5Cimplies%20KI%3D%5Csqrt%7B4%2B1%7D%5Cimplies%20%5Cboxed%7BKI%3D%5Csqrt%7B5%7D%7D%5C%5C%5C%5C%0A-------------------------------)
![\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) J&({{ -7}}\quad ,&{{ 4}})\quad % (c,d) M&({{ -8}}\quad ,&{{ 3}}) \end{array}\qquad % distance value \\\\\\ JM=\sqrt{[-8-(-7)]^2+[3-4]^2}\implies JM=\sqrt{(-8+7)^2+(3-4)^2} \\\\\\ JM=\sqrt{(-1)^2+(-1)^2}\implies \boxed{JM=\sqrt{2}}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Blllll%7D%0A%26x_1%26y_1%26x_2%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0AJ%26%28%7B%7B%20-7%7D%7D%5Cquad%20%2C%26%7B%7B%204%7D%7D%29%5Cquad%20%0A%25%20%20%28c%2Cd%29%0AM%26%28%7B%7B%20-8%7D%7D%5Cquad%20%2C%26%7B%7B%203%7D%7D%29%0A%5Cend%7Barray%7D%5Cqquad%20%0A%25%20%20distance%20value%0A%5C%5C%5C%5C%5C%5C%0AJM%3D%5Csqrt%7B%5B-8-%28-7%29%5D%5E2%2B%5B3-4%5D%5E2%7D%5Cimplies%20JM%3D%5Csqrt%7B%28-8%2B7%29%5E2%2B%283-4%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AJM%3D%5Csqrt%7B%28-1%29%5E2%2B%28-1%29%5E2%7D%5Cimplies%20%5Cboxed%7BJM%3D%5Csqrt%7B2%7D%7D)
so, add all sides, and that's the perimeter of the trapezoid.
Answer:
D
Step-by-step explanation:
"The slope of AB is different than the slope of BC" the slope are on the same straight line, so this is incorrect! It doesn't matter which portion of the line you look at, the slope will always be the same.
The answer to the question
Answer:
n = 30 pieces
Step-by-step explanation:
Firstly calculate the number of pieces that Luna's puzzle has....,
;180 ÷ 4 = 45 pieces
Hence if Luna has used 15 pieces...then the number of pieces left,
; 45 - 15 = n
;Hence..., n = 30 pieces