1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Semenov [28]
4 years ago
5

425 is decreased to 319

Mathematics
1 answer:
LiRa [457]4 years ago
5 0
425 is decreased to 319.

"Decreased to" and "decreased by" have different meaning.
"decreased to" means that the number given after the phrase is the difference in the subtraction.
"decreased by" means that the number given after the phrase is the number deducted from the other number to get the difference.

319 is the difference. We need to get the number to be deducted from 425.

425 - x = 319
425 - 319 = x
106 = x

to check:
425 - 106 = 319
319 = 319
You might be interested in
Sarah Earns a weekly salary of 445+ commission of 8.5% on sale at the clothing store when she works how much should she turned i
umka2103 [35]

Answer:

Penis

Step-by-step explanation:

dgshdfhgffhdhfdhfgd

6 0
3 years ago
A random sample of 20 married women showed that the mean time spent on housework by them was 29.8 hours a week with a standard d
DanielleElmas [232]

Answer:

95% confidence interval for the mean time spent on housework per week by all married women.

( 26.66 , 32.94)

Step-by-step explanation:

<u><em>Step(i)</em></u>:-  

Given random sample size 'n' = 20

Mean of the sample (x⁻ ) = 29.8 hours

Standard deviation of the sample (S) = 6.7

Given Margin of error = 3.14

<u><em>Step(ii):</em></u>-

95% confidence interval for the mean is determined by

(x^{-} - t_{0.05} \frac{S}{\sqrt{n} } , x^{-} +t_{0.05} \frac{S}{\sqrt{n} })

We know  that margin of error is determined by

M.E = \frac{t_{0.05}XS.D }{\sqrt{n} } = 3.14

Now 95% confidence interval for the mean time spent on housework per week by all married women.

(29.8 - 3.14 , 29.8+3.14)

( 26.66 , 32.94)

8 0
3 years ago
Write a real-world problem that can be represented by the equation f + 5= -9.
miv72 [106K]

Answer: Katie is scuba diving at an altitude of -14 ft below sea level. She goes up 5 ft. What altitude is Katie at after she goes up 5 ft?

Step-by-step explanation:

3 0
2 years ago
Read 2 more answers
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
A large industrial firm allows a discount on any invoice that is paid within 30 days. of all invoices, 10% receive the discount.
Daniel [21]
This situation has two outcomes: either an invoice is discounted or not. This two outcomes satisfy what we call a binomial distribution (note "bi" in binomial).

The binomial distribution tells us the probability that a randomly selected sample will have the outcome of success. In this case, we consider receiving the discount as the "success" outcome while not receiving it means "failure". The distribution takes the form:

P(X=x)= _{n}C_{x} p^{x}  q^{n-x}
where n is the total number of samples, x is the number of samples you'll expect to have a success outcome, p is the probability of success, q is the probability of failure, and nCx is the combination of n samples taken x at a time.

You have an inconsistency regarding the total number of samples by the way, but I will take the first mentioned sample of 15 as I answer (you can just follow through the same process for another value).

For the next step, let's digest the problem to get the needed variables.

The total number of samples, n, is equal to 15. The probability of success (receiving a discount), p, is 10% or 0.1, and the probability of failure (not receiving a discount) is 90% or 0.9.

For P(X=x), we need to find the probability that less than two of the samples have success outcomes therefore we need to find the probability that NO invoice will receive the discount plus the probability that ONE invoice will receive the discount. This is equivalent to saying
P(X\ \textless \ 2)=P(X=0)+P(X=1)

Calculating these probabilities we'll get:
P(X=0)= _{15}C_{0} (0.1)^{0} (0.9)^{15}=0.206
P(X=1)= _{15}C_{1} (0.1)^{1} (0.9)^{14}=0.343
P(X\ \textless \ 2)=P(X=0)+P(X=1)=0.206+0.343=0.549

ANSWER: The probability that fewer than 2 sampled invoices will receive the discount is 0.549 or 54.9%.
6 0
3 years ago
Other questions:
  • In triangle FGH, what is measure of angle F + the measure if angle G + the measure of angle H
    15·1 answer
  • How do u simplify this?<br> 4r-3+6s-8r-(4s-6)
    9·1 answer
  • Find in simplest form
    15·2 answers
  • Express in exponential form.<br><br> logbN = x
    14·2 answers
  • HELP THIS IS SO HARD ASP PLS
    15·1 answer
  • Which expression is equivalent to 3/32x^8y^10
    10·1 answer
  • If travel 50 miles in 3 hours what is my rate in miles per hour
    7·2 answers
  • Hey, can you plz help me answer this!
    6·2 answers
  • #53. will give the best answer brainliest <br>​
    6·1 answer
  • Write the least common multiple of 16 and 24.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!