Answer:
1.a=2
2. C x=2 and x=-3
Step-by-step explanation:
The standard form for the quadratic function is
ax^2 +bx+c
so we need to rewrite the function to be in this form
2x^2 -10 = 7x
Subtract 7x from each side
2x^2 -7x-10 = 7x-7x
2x^2 -7x-10 = 0
a =2, b= -7 c=-10
2. The quadratic formula is
-b ± sqrt(b^2 -4ac)
----------------------------
2a
2x^2 + 2x=12
Lest get the equation in proper form
2x^2 + 2x-12 = 12-12
2x^2 +2x-12 =0
a=2 b=2 c=-12
Lets substitute what we know
-2 ± sqrt(2^2 -4(2)(-12))
----------------------------
2(2)
-2 ± sqrt(4+96)
----------------------------
2(2)
-2 ± sqrt(100)
----------------------------
4
-2 ± 10
----------------------------
4
-2 + 10 -2-10
----------- and --------------
4 4
8/4 and -12/4
2 and -3
Step-by-step explanation:
what type of help u want......
Answer:
We have to prove
sin(α+β)-sin(α-β)=2 cos α sin β
We will take the left hand side to prove it equal to right hand side
So,
=sin(α+β)-sin(α-β) Eqn 1
We will use the following identities:
sin(α+β)=sin α cos β+cos α sin β
and
sin(α-β)=sin α cos β-cos α sin β
Putting the identities in eqn 1
=sin(α+β)-sin(α-β)
=[ sin α cos β+cos α sin β ]-[sin α cos β-cos α sin β ]
=sin α cos β+cos α sin β- sinα cos β+cos α sin β
sinα cosβ will be cancelled.
=cos α sin β+ cos α sin β
=2 cos α sin β
Hence,
sin(α+β)-sin(α-β)=2 cos α sin β
Answer:
the answer to the question is 3.2