B maybe or A
Because 15 percent of 212 is 31.8 so it’s closer to 40 maybe
Step-by-step explanation:
I assume that "ground" is at 0 ft height. which is in an actual scenario not airways the case.
y = -16x² + 64x + 89
shows us that the tower is 89 ft tall (the result for x = 0, at the start).
anyway, if the original assumption is correct, then we need to solve
0 = -16x² + 64x + 89
the general solution for such a quadratic equation is
x = (-b ± sqrt(b² - 4ac))/)2a)
in our case
a = -16
b = 64
c = 89
x = (-64 ± sqrt(64² - 4×-16×89))/(2×-16) =
= (-64 ± sqrt(4096 + 5696))/-32 =
= (-64 ± sqrt(9792))/-32
x1 = (-64 + 98.95453501...)/-32 = -1.092329219... s
x2 = (-64 - 98.95453501...)/-32 = 5.092329219... s
the negative solution for time is but useful here (it would be the time calculated back to ground at the start).
so, x2 is our solution.
the rocket hits the ground after about 5.09 seconds.
There’s no graph add a pic <33
96 fluid ounces < 13 cups
25 pounds > 384 ounces
8 yards = 288 inches
Have a nice day!
Answer:
a_n = 2^(n - 1) 3^(3 - n)
Step-by-step explanation:
9,6,4,8/3,…
a1 = 3^2
a2 = 3 * 2
a3 = 2^2
As we can see, the 3 ^x is decreasing and the 2^ y is increasing
We need to play with the exponent in terms of n
Lets look at the exponent for the base of 2
a1 = 3^2 2^0
a2 = 3^1 2^1
a3 = 3^ 0 2^2
an = 3^ 2^(n-1)
I picked n-1 because that is where it starts 0
n = 1 (1-1) =0
n=2 (2-1) =1
n=3 (3-1) =2
Now we need to figure out the exponent for the 3 base
I will pick (3-n)
n =1 (3-1) =2
n =2 (3-2) =1
n=3 (3-3) =0