Answer:
a) P(x=3)=0.089
b) P(x≥3)=0.938
c) 1.5 arrivals
Step-by-step explanation:
Let t be the time (in hours), then random variable X is the number of people arriving for treatment at an emergency room.
The variable X is modeled by a Poisson process with a rate parameter of λ=6.
The probability of exactly k arrivals in a particular hour can be written as:

a) The probability that exactly 3 arrivals occur during a particular hour is:

b) The probability that <em>at least</em> 3 people arrive during a particular hour is:
![P(x\geq3)=1-[P(x=0)+P(x=1)+P(x=2)]\\\\\\P(0)=6^{0} \cdot e^{-6}/0!=1*0.0025/1=0.002\\\\P(1)=6^{1} \cdot e^{-6}/1!=6*0.0025/1=0.015\\\\P(2)=6^{2} \cdot e^{-6}/2!=36*0.0025/2=0.045\\\\\\P(x\geq3)=1-[0.002+0.015+0.045]=1-0.062=0.938](https://tex.z-dn.net/?f=P%28x%5Cgeq3%29%3D1-%5BP%28x%3D0%29%2BP%28x%3D1%29%2BP%28x%3D2%29%5D%5C%5C%5C%5C%5C%5CP%280%29%3D6%5E%7B0%7D%20%5Ccdot%20e%5E%7B-6%7D%2F0%21%3D1%2A0.0025%2F1%3D0.002%5C%5C%5C%5CP%281%29%3D6%5E%7B1%7D%20%5Ccdot%20e%5E%7B-6%7D%2F1%21%3D6%2A0.0025%2F1%3D0.015%5C%5C%5C%5CP%282%29%3D6%5E%7B2%7D%20%5Ccdot%20e%5E%7B-6%7D%2F2%21%3D36%2A0.0025%2F2%3D0.045%5C%5C%5C%5C%5C%5CP%28x%5Cgeq3%29%3D1-%5B0.002%2B0.015%2B0.045%5D%3D1-0.062%3D0.938)
c) In this case, t=0.25, so we recalculate the parameter as:

The expected value for a Poisson distribution is equal to its parameter λ, so in this case we expect 1.5 arrivals in a period of 15 minutes.

31/7
First you multiply the denominator(7) by the whole number(4) then you would add the numerator(3) to get the new numerator place the new numerator(31) I’ve the old denominator(7)
I hope this helps
In statistics, an outlier is an observation point that is distant from other observations. These extreme values need not necessarily impact the model performance or accuracy, but when they do they are called “Influential” points. Note: An outlier is a data point that diverges from an overall pattern in a sample.
Answer:in the points given, plot them first than the number in the left of the parentheses is x and the right is y.
Step-by-step explanation: