Split up each force into horizontal and vertical components.
• 300 N at N30°E :
(300 N) (cos(30°) i + sin(30°) j)
• 400 N at N60°E :
(400 N) (cos(60°) i + sin(60°) j)
• 500 N at N80°E :
(500 N) (cos(80°) i + sin(80°) j)
The resultant force is the sum of these forces,
∑ F = (300 cos(30°) + 400 cos(60°) + 500 cos(80°)) i
… … … + (300 sin(30°) + 400 sin(60°) + 500 sin(80°)) j N
∑ F ≈ (546.632 i + 988.814 j) N
so ∑ F has a magnitude of approximately 1129.85 N and points in the direction of approximately N61.0655°E.
Its 12 because 4 times 12 is 48 if you add 7 to 48 you get 55
Let

, where

and let

be any real constant.
Given this definition of scalar multiplication, we can see right away that there is no identity element

such that

because
It is 2/18 I hope I can help
Class F=36.6666666667%
class E=33.3333333333%
class H=41.6666666667%
class G=<span>32%</span>