For example:
Find: (3-i)+(2+3i) by graphing
Step 1: Graph 3-i and 2+3i on the complex plane. Connect each of these numbers to the origin with a line segment.
<h3>
Answer: 2x(x^2-2)(x+1)</h3>
=========================================================
Explanation:
First factor out the GCF 2x
2x^4+2x^3-4x^2-4x
2x*x^3+2x*x^2-2x*2x-2x*2
2x(x^3 + x^2 - 2x - 2)
Then let's factor the expression inside the parenthesis using the factor by grouping method
x^3 + x^2 - 2x - 2
(x^3 + x^2) + (- 2x - 2)
x^2(x + 1) - 2(x + 1)
(x^2 - 2)(x+1)
We see that x^3 + x^2 - 2x - 2 factors to (x^2-2)(x+1)
Overall, the original expression fully factors to 2x(x^2-2)(x+1)
length = 2x
width = x^2-2
height = x+1
The order of length, width, and height doesn't matter.
Answer:
Solution given:
-6(3x-⅔)
distribute it
-18x+6*⅔
<u>-18x+4</u><u> </u><u>is</u><u> </u><u>a</u><u> </u><u>required</u><u> </u><u>answer</u><u>.</u>