It would be potassium chloride or kcl
N₂, H₂, NH₃ are present in the reaction mixture when equilibrium has been obtained.
Balanced chemical reaction: 3H₂ + N₂ ⇄ 2NH₃
Hydrogen (H₂ ) and nitrogen (N₂) are reactants.
Ammonia (NH₃) is product of the reaction.
Reaction goes in both direction, both reactants and product are present.
The amount of substance of reactants and products of reaction do not change when chemical reaction is in chemical equilibrium.
In a chemical reaction, chemical equilibrium is the state in which both reactants and products are present in concentrations which not change with time.
Speed of direct and irreversible chemical reaction are equal.
More about equilibrium: brainly.com/question/25651917
#SPJ4
<span>Benzoin<span> is an organic compound with the formula PhCH(OH)C(O)Ph. It is
a hydroxy ketone attached to two phenyl groups.</span><span>
To answer your question, </span><span>the balanced oxidation-reduction reaction equation for the
oxidation of benzoin by ammonium nitrate is:
</span>2Ph-C(OH)-C(O)-Ph+NH4NO3
--> 2Ph-C(O)-C(O)-Ph + N2 + 3H2O.</span>
<span>
</span><span>I hope this helps and if you have any
further questions, please don’t hesitate to ask again.</span>
Answer:
✨ science ✨ and ✨ big brain stuff ✨
Explanation:
sorry
Answer:
The order is:
F >Be >Li >Ba
Explanation:
Electrons are held in atoms by their attraction to the nucleus which means that to remove an electron from the atom energy is needed.
The ionization energy is the minimum energy necessary to remove an electron from an atom in the gas phase and ground state, the electron removed being the outermost, that is, the furthest from the nucleus. The further away the electron is from the nucleus, the easier it is to remove it, that is, the less energy is needed.
By increasing the atomic number of the elements of the same group, the nuclear attraction on the outermost electron decreases, since the atomic radius increases. Then the ionization energy decreases. In other words, in a group it decreases from top to bottom because the size of the atom increases and it is easier to remove an external electron.
By increasing the atomic number of the elements of the same period, the nuclear attraction on the outermost electron increases, since the atomic radius decreases. Therefore, in a period, as the atomic number increases, the ionization energy increases. In summary, in a period it increases from left to right as the effective nuclear charge increases and it increases thanks to the decrease in the size of the atom.
Taking these considerations into account, the order is:
<u><em>F >Be >Li >Ba</em></u>