Answer:

Explanation:
Hello there!
In this case, according to the required half-reaction, we start by setting it up from bismuth (V) oxide ion to bismuth (III) ion:

Thus, next realize that the oxidation state of Bi in BiO3^- is 5+ because oxygen is 2- (-2*3+x=-1;x=-1+6;x=+5), so we obtain:

Thereafter, we realize three water molecules are needed on the right in order to balance the oxygens and consequently 6 hydrogen atoms on the left to balance hydrogen:

Now, since the balance is is basic media, we add six molecules of hydroxide ions in order to produce water with the hydrogen ones:

Then, we accommodate the waters to obtain:

Best regards!
Answer:
One way in which the rocks are formed on Mount Moran is due to the presence of intense heat and pressure. When the slabs of sedimentary rocks got buried deep beneath the Earth's surface, they have experienced intense heat and pressure. Later on, they formed into metamorphic rocks.
Explanation:
Answer:
[Ba^2+] = 0.160 M
Explanation:
First, let's calculate the moles of each reactant with the following expression:
n = M * V
moles of K2CO3 = 0.02 x 0.200 = 0.004 moles
moles of Ba(NO3)2 = 0.03 x 0.400 = 0.012 moles
Now, let's write the equation that it's taking place. If it's neccesary, we will balance that.
Ba(NO3)2 + K2CO3 --> BaCO3 + 2KNO3
As you can see, 0.04 moles of K2CO3 will react with only 0.004 moles of Ba(NO3) because is the limiting reactant. Therefore, you'll have a remanent of
0.012 - 0.004 = 0.008 moles of Ba(NO3)2
These moles are in total volume of 50 mL (30 + 20 = 50)
So finally, the concentration of Ba in solution will be:
[Ba] = 0.008 / 0.050 = 0.160 M
<span>B.) When heated water becomes water vapor and turns from a liquid to a gas, "Evaporation" is Occurring.
Hope this helps!</span>