If you have a grid with a hundred units and you need to show 1 hundredth (or 1%) you shade in 1 unit. If you need to show a tenth (or 10%) you shade 10 Units. I would need a picture of the grid to help any further.
the distance between cd rounded to the nearest tenth is ≈ 7
The equation that models the sequence is: 6+6 each time.
The <em>speed</em> intervals such that the mileage of the vehicle described is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h]
<h3>How to determine the range of speed associate to desired gas mileages</h3>
In this question we have a <em>quadratic</em> function of the <em>gas</em> mileage (g), in miles per gallon, in terms of the <em>vehicle</em> speed (v), in miles per hour. Based on the information given in the statement we must solve for v the following <em>quadratic</em> function:
g = 10 + 0.7 · v - 0.01 · v² (1)
An effective approach consists in using a <em>graphing</em> tool, in which a <em>horizontal</em> line (g = 20) is applied on the <em>maximum desired</em> mileage such that we can determine the <em>speed</em> intervals. The <em>speed</em> intervals such that the mileage of the vehicle is 20 miles per gallon or less are: v ∈ [10 mi/h, 20 mi/h] ∪ [50 mi/h, 75 mi/h].
To learn more on quadratic functions: brainly.com/question/5975436
#SPJ1
Answer: A
Step-by-step explanation:
First, the problem is g(f(x)). You would plug in f(x) wherever you see an x in g(x). To find the domain, you take the bottom function, and set it equal to 0.

When you solve that, you get x=2. You know your domain is x≥2, but there is as asymptote at x=11. That means the graph never reaches x=11, but gets very close. You find that by setting the entire equation equal to 0 and solve from there.