Fraction: 1/512
decimal: 0.001953
(15p⁺⁴.q⁻⁶) /(-20p⁻¹².q⁻³).
Remember that a⁻ⁿ = 1/aⁿ and 1/a⁻ⁿ = aⁿ
(-15/4).(p⁻⁴.q⁻⁶)(p⁺¹².q⁺³).
(-15/20).(p⁻⁴.p¹².q⁻⁶.q³)
Remember aⁿ.aˣ = aⁿ⁺ˣ
(-15/20).(p⁸.q⁻³)
-3/5(p⁸.q⁻³)
Answer:
0.9544
Step-by-step explanation:
We are given that mean=18 and standard deviation=1 and we have to find P(16<X<20).
P(16<X<20)=P(z1<Z<z2)
z1=(x1-mean)/standard deviation
z1=(16-18)/1=-2
z2=(x2-mean)/standard deviation
z2=(20-18)/1=2
P(16<X<20)=P(z1<Z<z2)=P(-2<Z<2)
P(16<X<20)=P(-2<Z<0)+P(0<Z<2)
P(16<X<20)=0.4772+0.4772=0.9544
The probability that the height of a tree is between 16 and 20 feet is 95.44%
Simplify (we cannot solve if there is no equals)
6s^3(5s^2)(3s^4)
multiply the coefficients, add the exponents since the bases are the same
(6*5*3) s^(3+2+4)
90 s^(9)